Treffer: A novel topic feature for image scene classification

Title:
A novel topic feature for image scene classification
Source:
Neurocomputing (Amsterdam). 148:467-476
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Reconnaissance et synthèse de la parole et du son. Linguistique, Speech and sound recognition and synthesis. Linguistics, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Analyse documentaire, Document analysis, Análisis documental, Analyse donnée, Data analysis, Análisis datos, Analyse image, Image analysis, Análisis imagen, Analyse scène, Scene analysis, Análisis escena, Cognition spatiale, Spatial cognition, Cognición espacial, Critère sélection, Selection criterion, Criterio selección, Donnée spatiale, Spatial data, Dato espacial, Echantillonnage Gibbs, Gibbs sampling, Muestreo Gibbs, Extraction forme, Pattern extraction, Extracción forma, Inférence, Inference, Inferencia, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Langage naturel, Natural language, Lenguaje natural, Linguistique, Linguistics, Linguística, Modélisation, Modeling, Modelización, Réseau sémantique, Semantic network, Red semántica, Table codage, Codebook, Tabla codificación, Théorie variable cachée, Hidden variable theory, Teoría variable escondida, Traitement image, Image processing, Procesamiento imagen, Vision ordinateur, Computer vision, Visión ordenador, Classification image, Image classification, Clasificación de imágenes, Langage de bas niveau, low-level language, Lenguaje de bajo nivel, Gibbs sampler, IDA model, Image scene classification, Topic features
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
College of Communication Engineering, Jilin University, China
School of Computing and Information Systems, Athabasca University, Alberta, Canada
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28844560
Database:
PASCAL Archive

Weitere Informationen

We propose a novel topic feature for image scene classification. The feature is defined based on the thematic representation of images constructed by using topics, i.e., the latent variables of LDA (latent Dirichlet allocation) and their learning algorithms. Different from the related works, the feature defined in this paper shares topics in different classes, and does not need class labels before classification, so that it can avoid the coupling between features and labels. For representing a new image, our approach directly extracts its topic feature by codewords linear mapping instead of the inference of latent variable. We compared our method with three other topic models under similar experimental condition, as well as with pooling methods on the 15 Scenes dataset. The results show that our approach is capable of classifying the scene classes with a higher accuracy than the other topic models and pooling methods without using spatial information. We also observe that the performance improvement is due to the proposed feature and our algorithm, rather than the other factors such as additional low-level image features and stronger preprocessing.