Result: Efficient binary classification through energy minimisation of slack variables

Title:
Efficient binary classification through energy minimisation of slack variables
Source:
Neurocomputing (Amsterdam). 148:498-511
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Traitement des langages et microprogrammation, Language processing and microprogramming, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Classification à vaste marge, Vector support machine, Máquina ejemplo soporte, Critère sélection, Selection criterion, Criterio selección, Economies d'énergie, Energy savings, Ahorros energía, Etude expérimentale, Experimental study, Estudio experimental, Evaluation performance, Performance evaluation, Evaluación prestación, Fonction base radiale, Radial basis function, Función radial base, Fonction noyau, Kernel function, Función núcleo, Fonction polynomiale, Polynomial function, Función polinomial, Hyperplan, Hyperplane, Hiperplano, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Intelligence en essaim, Swarm intelligence, Inteligencia de enjambre, Méthode noyau, Kernel method, Método núcleo, Optimisation PSO, Particle swarm optimization, Optimización PSO, Parallélisme, Parallelism, Paralelismo, Précision élevée, High precision, Precisión elevada, Simulation ordinateur, Computer simulation, Simulación computadora, Système immunitaire, Immune system, Sistema inmunitario, Classification binaire, Binary classification, Clasificación binaria, Vie artificielle, Artificial life, Vida artificial, Genetic optimisation, Kernel methods, Slack minimisation
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Surgery and Cancer, Department of Bioengineering, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London W6 8RF, United Kingdom
Information Technology Department, ATEI of Thessaloniki, Sindos 57400, Greece
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28844563
Database:
PASCAL Archive

Further Information

Slack variables are utilized in optimisation problems in order to build soft margin classifiers that allow for more flexibility during training. A robust binary classification algorithm that is based on the minimisation of the energy of slack variables, called the Mean Squared Slack (MSS), is proposed in this paper. Initially, the algorithm is analysed for the linear case, where the minimum mean squared slack is attained as a separating vector. Next, the kernel trick is exploited to facilitate computation of non-linear separating hyperplanes. For this paper, two kernels are tested, namely the radial basis function (RBF) and the polynomial kernel. In order to ensure a time and memory efficient system that converges in a few iterations four strategies are applied so as to withhold just a subset of feature vectors that are misclassified during training. Aiming to the automatic optimisation of the kernel parameters a modern combination of particle swarm optimisation (PSO) with artificial immune system (AIS) is tested. The aforementioned evolutionary methods are combined in a parallel architecture. Four datasets of diverse nature are exploited for performance evaluation, namely the iris, the SPECTheart, the vertebral column, and the wine quality datasets. Simulation experiments demonstrate high classification accuracy in a number of benchmark datasets.