Treffer: Ranking on heterogeneous manifolds for tag recommendation in social tagging services

Title:
Ranking on heterogeneous manifolds for tag recommendation in social tagging services
Source:
Neurocomputing (Amsterdam). 148:521-534
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 45 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Systèmes d'information. Bases de données, Information systems. Data bases, Algorithmique, Algorithmics, Algorítmica, Annotation, Anotación, Classification hiérarchique, Hierarchical classification, Clasificación jerarquizada, Internet, Modélisation, Modeling, Modelización, Mot clé, Keyword, Palabra clave, Métadonnée, Metadata, Metadatos, Méthode itérative, Iterative method, Método iterativo, Personnalisation, Customization, Personalización, Pertinence, Relevance, Pertinencia, Recommandation, Recommendation, Recomendación, Réseau social, Social network, Red social, Réseau web, World wide web, Red WWW, Résultat expérimental, Experimental result, Resultado experimental, Site Web, Web site, Sitio Web, Sémantique, Semantics, Semántica, Théorie graphe, Graph theory, Teoría grafo, Base donnée très grande, Very large databases, Base de datos a gran escala, Conception centrée utilisateur, User centred design, Diseño centrado en el usuario, Heterogeneous graphs, Manifold ranking, Social tagging
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
National Laboratory of Radar Signal Processing, Xidian University, Xi'an, Shaanxi, CN 710071, China
College of Information and Technology, Northwest University of China, Xian, Shaanxi, CN 710127, China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28844565
Database:
PASCAL Archive

Weitere Informationen

Nowadays, most social Websites allow users to annotate resources (such as Web pages and images) with keywords, i.e. tags. Collaborative tagging data reflects the semantic perception of users, thus providing valuable information for the related recommendation problems, e.g. tag recommendation, resource recommendation. In this paper, we tackle the problem of personalized tag recommendation in social tagging services by generalizing the traditional manifold ranking idea. Specifically, we model the complex relationships in tagging data as a heterogeneous graph and propose a novel ranking algorithmic framework for heterogeneous manifolds, named GRoMO (Graph-based Ranking of Multi-type interrelated Objects). In our system both the resource to be tagged (accounting for relevance) and the user's historical tags (accounting for personalization) are treated as query inputs. Then tags are ranked according to the output of GRoMO and the top tags are recommended to that user. We also explore adapting GRoMO for resource recommendation. For experiments we crawled a tagging dataset from the well-known tagging service, Del.icio.us. Experimental results indicate (1) the proposed method is effective and significantly outperforms baseline methods; (2) the iterative form solutions of GRoMO converge very fast and can be used when the dataset is large; (3) GRoMO can also be used for resource recommendation.