Result: A novel statistical cerebrovascular segmentation algorithm with particle swarm optimization
Software College, Tianjin University, Tianjin, China
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Scanning and diagnostic techniques (generalities)
Further Information
We present an automatic statistical intensity-based approach to extract the 3D cerebrovascular structure from time-of flight (TOF) magnetic resonance angiography (MRA) data. We use the finite mixture model (FMM) to fit the intensity histogram of the brain image sequence, where the cerebral vascular structure is modeled by a Gaussian distribution function and the other low intensity tissues are modeled by Gaussian and Rayleigh distribution functions. To estimate the parameters of the FMM, we propose an improved particle swarm optimization (PSO) algorithm, which has a disturbing term in speeding updating the formula of PSO to ensure its convergence. We also use the ring shape topology of the particles neighborhood to improve the performance of the algorithm. Computational results on 34 test data show that the proposed method provides accurate segmentation, especially for those blood vessels of small sizes.