Treffer: Scene and place recognition using a hierarchical latent topic model

Title:
Scene and place recognition using a hierarchical latent topic model
Source:
Neurocomputing (Amsterdam). 148:578-586
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Reconnaissance et synthèse de la parole et du son. Linguistique, Speech and sound recognition and synthesis. Linguistics, Automatique théorique. Systèmes, Control theory. Systems, Robotique, Robotics, Algorithme k moyenne, K means algorithm, Algoritmo k media, Algorithme rapide, Fast algorithm, Algoritmo rápido, Analyse documentaire, Document analysis, Análisis documental, Analyse image, Image analysis, Análisis imagen, Analyse scène, Scene analysis, Análisis escena, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Calcul variationnel, Variational calculus, Cálculo de variaciones, Catégorisation, Categorization, Categorización, Complexité calcul, Computational complexity, Complejidad computación, Eclairement, Illumination, Alumbrado, Efficacité, Efficiency, Eficacia, Estimation paramètre, Parameter estimation, Estimación parámetro, Galerie, Gallery, Galería, Identification système, System identification, Identificación sistema, Inférence, Inference, Inferencia, Installation extérieure, Outdoor installation, Instalación exterior, Installation intérieure, Indoor installation, Instalación interior, Langage naturel, Natural language, Lenguaje natural, Linguistique, Linguistics, Linguística, Modélisation, Modeling, Modelización, Robotique, Robotics, Robótica, Robustesse, Robustness, Robustez, Résultat expérimental, Experimental result, Resultado experimental, Système hiérarchisé, Hierarchical system, Sistema jerarquizado, Système vision, Vision system, Sistema visión, Table codage, Codebook, Tabla codificación, Vision artificielle, Artificial vision, Visión artificial, Vision ordinateur, Computer vision, Visión ordenador, Apprentissage non supervisé, Unsupervised learning, Aprendizaje no supervisado, Classification image, Image classification, Clasificación de imágenes, Scène naturelle, Natural scenes, Escena natural, Fast variational inference, Highlighted Latent Dirichlet Allocation, Place recognition, Probabilistic topic model
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Control Science and Engineering, Beijing University of Technology, Beijing 100124, China
Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, KS 66045-7608, United States
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28844571
Database:
PASCAL Archive

Weitere Informationen

Place classification and object categorization are necessary functions of vision-based robotic systems. In this paper, a novel latent topic model is proposed to learn and recognize scenes and places. First, each image in the training set is characterized by a collection of local features, known as codewords, obtained by unsupervised learning, and each codeword is represented as part of a topic. Then, the codeword distribution of detected local features from the training images is learned by performing a k-means algorithm. Next, a modified Latent Dirichlet Allocation model is employed to highlight the significant features (i.e., the codewords with higher frequency in the codebook). The Highlighted Latent Dirichlet Allocation (HLDA) improves the efficiency of learning procedure. Finally, a fast variational inference algorithm for HLDA is proposed to reduce the computational complexity in parameter estimation. Experimental results using natural scenes, indoor and outdoor datasets show that the proposed HLDA method performs better than other counterparts in terms of accuracy and robustness with the variation of illumination conditions, perspectives, and scales. The Fast HLDA is order of magnitudes faster than the HLDA without obvious loss of accuracy.