Treffer: Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network

Title:
Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network
Source:
Neurocomputing (Amsterdam). 148:587-599
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 36 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Simulation, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Electrotechnique. Electroenergetique, Electrical engineering. Electrical power engineering, Electroénergétique, Electrical power engineering, Réseaux et lignes électriques, Power networks and lines, Exploitation. Commande de charge. Fiabilité, Operation. Load control. Reliability, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Classification, Clasificación, Développement logiciel, Software development, Desarrollo logicial, Endommagement, Damaging, Deterioración, Espace phase, Phase space, Espacio fase, Extraction forme, Pattern extraction, Extracción forma, Fiabilité, Reliability, Fiabilidad, Fonction base radiale, Radial basis function, Función radial base, Ilôtage, Network splitting, Fraccionamiento red, Industrialisation, Industrialization, Industrialización, Parallélisme massif, Massive parallelism, Paralelismo masivo, Pollution air, Air pollution, Contaminación aire, Rendement élevé, High efficiency, Rendimiento elevado, Réseau neuronal, Neural network, Red neuronal, Réseau électrique, Electrical network, Red eléctrica, Système passif, Passive system, Sistema pasivo, Sécurité, Safety, Seguridad, Série temporelle, Time series, Serie temporal, Tension électrique, Voltage, Voltaje, Terminal, Transformation ondelette, Wavelet transformation, Transformación ondita, Production énergie répartie, Distributed power generation, Generación distribuida de energía eléctrica, Artificial neural network, Distributed generation, Islanding detection, Non-detection zone, Wavelet transform
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaart Malaysia, Kajang, Malaysia
Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
Power System Department, Tubitak Uzay, Ankara, Turkey
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Electrical engineering. Electroenergetics
Accession Number:
edscal.28844572
Database:
PASCAL Archive

Weitere Informationen

The high penetration level of distributed generation (DG) provides numerous potential environmental benefits, such as high reliability, efficiency, and low carbon emissions. However, the effective detection of islanding and rapid DG disconnection is essential to avoid safety problems and equipment damage caused by the island mode operations of DGs. The common islanding protection technology is based on passive techniques that do not perturb the system but have large non-detection zones. This study attempts to develop a simple and effective passive islanding detection method with reference to a probabilistic neural network-based classifier, as well as utilizes the features extracted from three phase voltages seen at the DG terminal. This approach enables initial features to be obtained using the phase-space technique. This technique analyzes the time series in a higher dimensional space, revealing several hidden features of the original signal. Intensive simulations were conducted using the DigSilent Power Factory® software. Results show that the proposed islanding detection method using probabilistic neural network and phase-space technique is robust and capable of sensing the difference between the islanding condition and other system disturbances.