Treffer: Improved differential evolution algorithm for nonlinear programming and engineering design problems

Title:
Improved differential evolution algorithm for nonlinear programming and engineering design problems
Authors:
Source:
Neurocomputing (Amsterdam). 148:628-640
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 68 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence non paramétrique, Nonparametric inference, Plans d'expériences, Experimental design, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Genie mecanique. Construction mecanique, Mechanical engineering. Machine design, Généralités, General, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse enveloppement donnée, Data envelopment analysis, Análisis envolvimiento datos, Conception ingénierie, Engineering design, Concepción ingeniería, Etude expérimentale, Experimental study, Estudio experimental, Evaluation performance, Performance evaluation, Evaluación prestación, Faisabilité, Feasibility, Practicabilidad, Indice aptitude, Capability index, Indice aptitud, Méthode Taguchi, Taguchi method, Método Taguchi, Nombre réel, Real number, Número real, Optimisation, Optimization, Optimización, Orthogonalité, Orthogonality, Ortogonalidad, Plan expérience, Experimental design, Plan experiencia, Programmation mathématique, Mathematical programming, Programación matemática, Programmation non linéaire, Non linear programming, Programación no lineal, Raisonnement, Reasoning, Razonamiento, Robustesse, Robustness, Robustez, Evolution différentielle, Differential evolution, Evolución diferencial, Tableau orthogonal, Orthogonal array, Tablero ortogonal, Differential evolution algorithm, Engineering design problem, Sliding level
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, National Pingtung University, 4-18 Min-Sheng Road, Pingtung 900, Tawain, Province of China
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Mechanical engineering. Mechanical construction. Handling
Accession Number:
edscal.28844576
Database:
PASCAL Archive

Weitere Informationen

An improved differential evolution algorithm (IDEA) is proposed to solve nonlinear programming and engineering design problems. The proposed IDEA combines the Taguchi method with sliding levels and a differential evolution algorithm (DEA). The DEA has a powerful global exploration capability on macrospace and uses fewer control parameters. The systematic reasoning ability of the orthogonal array with sliding level and response table is used to exploit the better individuals on microspace to be potential offspring. Therefore, the proposed IDEA is well enhanced and balanced on exploration and exploitation. In this study, the sensitivity of evolutionary parameters for the performance of the IDEA is explored, and the IDEA shows its effectiveness and robustness compared with both the DEA and the real-coded genetic algorithm. The engineering design problems usually encounter a large number of design variables, a mix type of both discrete and continuous design variables, and many design constraints. The proposed IDEA is used to solve these engineering design optimization problems, and demonstrates its capability, feasibility, and robustness. From the computational experiments, the introduced IDEA can obtain better results and more prominent performance than the methods presented in the literatures.