Treffer: A hybrid memory built by SSD and DRAM to support in-memory Big Data analytics

Title:
A hybrid memory built by SSD and DRAM to support in-memory Big Data analytics
Source:
Special Issue on Big Data Research in ChinaKnowledge and information systems (Print). 41(2):335-354
Publisher Information:
London: Springer, 2014.
Publication Year:
2014
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Traitement des langages et microprogrammation, Language processing and microprogramming, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Systèmes d'information. Bases de données, Information systems. Data bases, Analyse donnée, Data analysis, Análisis datos, Architecture ordinateur, Computer architecture, Arquitectura ordenador, Calcul réparti, Distributed computing, Cálculo repartido, Comportement utilisateur, User behavior, Comportamiento usuario, Compression donnée, Data compression, Compresión dato, Coût énergie, Energy cost, Coste energía, Evaluation performance, Performance evaluation, Evaluación prestación, Haute performance, High performance, Alto rendimiento, Mémoire accès direct dynamique, Dynamic random access memory, Mémoire centrale, Core storage, Memoria central, Mémoire flash, Flash memory, Memoria flash, Mémoire partagée, Shared memory, Memoria compartida, Méthode adaptative, Adaptive method, Método adaptativo, Politique, Policy, Política, Prototype, Prototipo, Préchargement donnée, Prefetching, Precargamento dato, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Remplacement, Replacement, Reemplazo, Retard, Delay, Retraso, Résultat expérimental, Experimental result, Resultado experimental, Simulation ordinateur, Computer simulation, Simulación computadora, Base donnée très grande, Very large databases, Base de datos a gran escala, Big Data, Hybrid memory, In-memory computing, Prefetch, SSD
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China
College of Computer, National University of Defense Technology, Changsha, China
ISSN:
0219-1377
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28858878
Database:
PASCAL Archive

Weitere Informationen

Big Data requires a shift in traditional computing architecture. The in-memory computing is a new paradigm for Big Data analytics. However, DRAM-based main memory is neither cost-effective nor energy-effective. This work combines flash-based solid state drive (SSD) and DRAM together to build a hybrid memory, which meets both of the two requirements. As the latency of SSD is much higher than that of DRAM, the hybrid architecture should guarantee that most requests are served by DRAM rather than by SSD. Accordingly, we take two measures to enhance the hit ratio of DRAM. First, the hybrid memory employs an adaptive prefetching mechanism to guarantee that data have already been prepared in DRAM before they are demanded. Second, the DRAM employs a novel replacement policy to give higher priority to replace data that are easy to be prefetched because these data can be served by prefetching once they are demanded once again. On the contrary, the data that are hard to be prefetched are protected by DRAM. The prefetching mechanism and replacement policy employed by the hybrid memory rely on access patterns of files. So, we propose a novel pattern recognition method by improving the LZ data compression algorithm to detect access patterns. We evaluate our proposals via prototype and trace-driven simulations. Experimental results demonstrate that the hybrid memory is able to extend the DRAM by more than twice.