Treffer: On optimizing system energy of voltage-frequency island based 3-D multi-core SoCs under thermal constraints

Title:
On optimizing system energy of voltage-frequency island based 3-D multi-core SoCs under thermal constraints
Source:
Integration (Amsterdam). 48:36-45
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Circuits intégrés, Integrated circuits, Conception. Technologies. Analyse fonctionnement. Essais, Design. Technologies. Operation analysis. Testing, Circuits intégrés par fonction (dont mémoires et processeurs), Integrated circuits by function (including memories and processors), Circuits électriques, optiques et optoélectroniques, Electric, optical and optoelectronic circuits, Propriétés des circuits, Circuit properties, Circuits électroniques, Electronic circuits, Convertisseurs de signal, Signal convertors, Algorithme, Algorithm, Algoritmo, Architecture réseau, Network architecture, Arquitectura red, Circuit intégré, Integrated circuit, Circuito integrado, Consommation électricité, Electric power consumption, Consumo electricidad, Economies d'énergie, Energy savings, Ahorros energía, Electronique faible puissance, Low-power electronics, Empilement, Stacking, Apilamiento, Energie minimale, Minimum energy, Energía mínima, Etat actuel, State of the art, Estado actual, Gestion tâche, Task scheduling, Gestión labor, Globalement asynchrone localement synchrone, Globally asynchronous locally synchronous, Globalmente asincrono localmente sincrono, Implémentation, Implementation, Implementación, Mappage, Mapping, Carta de datos, Modèle 3 dimensions, Three dimensional model, Modelo 3 dimensiones, Méthode partition, Partition method, Método partición, Optimisation, Optimization, Optimización, Partitionnement, Partitioning, Subdivisión, Processeur multicoeur, Multicore processor, Procesador MultiNúcleo, Réseau interconnexion, Interconnection network, Red interconexión, Structure 3 dimensions, Three dimensional structure, Estructura 3 dimensiones, Système sur puce, System on a chip, Sistema sobre pastilla, 3-Dimensional SoCs, Power balancing, System energy, Thermal constraint, Voltage-frequency island
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electronic and Communication Engineering, School of Electrical and Electronic Engineering, North China Electric Power University, China
ISSN:
0167-9260
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.28891129
Database:
PASCAL Archive

Weitere Informationen

Three dimensional (3-D) multi-core SoC has been recognized as a promising solution for implementing complex applications with lower system energy. Recently, voltage-frequency island (VFI)-based design paradigm was widely adopted for energy optimization. However, the existing work commonly targeted 2-D platform, which cannot handle the exacerbated thermal issues and the increased solution space from 3-D integration. In this paper, we propose an optimization framework targeting VFI-based 3-D multi-core SoCs to minimize system energy meanwhile still meeting task deadline and thermal constraints. Our framework conducts at an earlier design phase in which designers have the freedom to determine the core stacks and map them into the hardware platform. Besides energy-aware task scheduling, we also conduct core stacking and task adjusting to balance the powers across the chip for thermal optimization. Moreover, by treating each core stack as a unity, the complicated problem of core mapping and VFI partitioning in 3-D platform can be simplified as a 2-D one. Experimental results demonstrate that on average our framework can achieve an energy reduction of 15.8% over the prior thermal balancing algorithm [17] (X. Zhou, J. Yang, Y. Xu, et al. Thermal-aware task scheduling for 3D multicore processors, IEEE Trans. Parallel Distrib. Syst. (TPDS), 21(1) (2010), 60-71.). Moreover, on average a reduction of 4.8 °C in peak temperature is achieved by our framework, compared with the state-of-the-art energy optimization scheme [8] (U.Y. Ogras, R. Marculescu, P. Choudhary, et al. Voltage-frequency island partitioning for GALS-based networks-on-chip, in: ACM/IEEE Design Automation Conference (DAC), 2007, pp. 110-115.).