Treffer: Variation-aware approaches with power improvement in digital circuits

Title:
Variation-aware approaches with power improvement in digital circuits
Source:
Integration (Amsterdam). 48:83-100
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 61 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Autres dispositifs multijonctions. Transistors de puissance. Thyristors, Other multijunction devices. Power transistors. Thyristors, Circuits intégrés, Integrated circuits, Conception. Technologies. Analyse fonctionnement. Essais, Design. Technologies. Operation analysis. Testing, Fabrication microélectronique (technologie des matériaux et des surfaces), Microelectronic fabrication (materials and surfaces technology), Circuits électriques, optiques et optoélectroniques, Electric, optical and optoelectronic circuits, Propriétés des circuits, Circuit properties, Circuits électroniques, Electronic circuits, Circuits numériques, Digital circuits, Algorithme, Algorithm, Algoritmo, Capacité électrique, Capacitance, Capacitancia, Caractéristique électrique, Electrical characteristic, Característica eléctrica, Circuit intégré CMOS, CMOS integrated circuits, Circuit intégré, Integrated circuit, Circuito integrado, Circuit logique, Logic circuit, Circuito lógico, Circuit numérique, Digital circuit, Circuito numérico, Conception circuit, Circuit design, Diseño circuito, Conception optimale, Optimal design, Concepción optimal, Consommation électricité, Electric power consumption, Consumo electricidad, Critère conception, Design criterion, Criterio concepción, Electronique puissance, Power electronics, Electrónica potencia, Evaluation performance, Performance evaluation, Evaluación prestación, Extensibilité, Scalability, Estensibilidad, Extraction paramètre, Parameter extraction, Extracción parámetro, Fabrication microélectronique, Microelectronic fabrication, Fabricación microeléctrica, Fiabilité, Reliability, Fiabilidad, Interconnexion, Interconnection, Interconexión, Lithographie, Lithography, Litografía, Logique seuil, Threshold logic, Lógica umbral, Porte logique, Logic gate, Puerta lógica, Procédé fabrication, Manufacturing process, Procedimiento fabricación, Seuil tension, Voltage threshold, Umbral tensión, Simulation numérique, Numerical simulation, Simulación numérica, Temps retard, Delay time, Tiempo retardo, Transistor puissance, Power transistor, Transistor potencia, Asynchronous router, Die-to-die variation, Environment variation, ISCAS85, Variation-aware methodology, Within-die variation
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Dependable System Design Lab., School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, Islamic Republic of
School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran, Islamic Republic of
ISSN:
0167-9260
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.28891133
Database:
PASCAL Archive

Weitere Informationen

In submicron technology, during the fabrication process factors like lithography and lens defect can change some of the physical parameters of transistors and interconnects. This change can modify the transistor electrical characteristics such as current, threshold voltage and gate capacitance, and thus it causes variation in power, delay and performance of the circuit. Process variation has become one of designer's challenges to the point that in below 45 nm technology it is considered as the most important issue in reliability. Power consumption and transistors variation are limiting factors to physical scalability. In this paper, we propose two approaches to reduce D2D and WID variations effects on digital CMOS circuits, at design time. The first approach concerns a variation-aware algorithm capable of extracting optimal design parameters to decrease variation and power. The second approach, using transistor stacking will help further reduce variation and power. Applying the algorithm on a digital design and according to parameters behavior in the presence of variation, we extract for each parameter value that will lead to power and variation reduction. On the other hand, with the stacking approach only basic gates are considered and subsequently gate configurations that reduce power and variation are proposed. The proposed approaches could be used identically for synchronous and asynchronous circuits. To prove this claim, we apply our approaches to a network-on-chip asynchronous router and a circuit from the ISCAS85 benchmark. All simulations are done in 32 nm technology using the HSPICE tool. The proposed algorithm similar to Monte Carlo simulation achieves the same results; however with lower execution time. The application of stacking approach to both asynchronous router and ISCAS85 circuit reduces variation effects up to 40.9% and 13.35%, respectively.