Treffer: Intelligent failure prediction models for scientific workflows

Title:
Intelligent failure prediction models for scientific workflows
Source:
Expert systems with applications. 42(3):980-989
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Langages de programmation, Programming languages, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Systèmes d'information. Bases de données, Information systems. Data bases, Performances des systèmes informatiques. Fiabilité, Computer systems performance. Reliability, Application scientifique, Scientific application, Aplicación científica, Apprentissage(intelligence artificielle), Learning (artificial intelligence), Calcul réparti, Distributed computing, Cálculo repartido, Calcul scientifique, Scientific computation, Computación científica, Collecticiel, Groupware, Défaillance, Failures, Fallo, Dépendance donnée, Data dependency, Dependencia dato, Estimation Bayes, Bayes estimation, Estimación Bayes, Evaluation performance, Performance evaluation, Evaluación prestación, Flux donnée, Data flow, Flujo datos, Haute performance, High performance, Alto rendimiento, Hétérogénéité, Heterogeneity, Heterogeneidad, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Métrique, Metric, Métrico, Panne, Breakdown, Pana, Processus métier, Business process, Proceso oficio, Recherche scientifique, Scientific research, Investigación científica, Réseau social, Social network, Red social, Service proactif, Proactive service, Sevicio proactivo, Service web, Web service, Servicio web, Tolérance faute, Fault tolerance, Tolerancia falta, Traitement flux donnée, Data flow processing, Workflow, Analyse tâche, Task analysis, Análisis de tareas, Informatique dans les nuages, Cloud computing, Computación en nube, Cloud Computing, Failure prediction, Machine learning, Scientific workflows, Workflows
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Computer Science and Engineering Department, Thapar University, Patiala, India
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28928430
Database:
PASCAL Archive

Weitere Informationen

The ever-growing demand and heterogeneity of Cloud Computing is garnering popularity with scientific communities to utilize the services of Cloud for executing large scale scientific applications in the form of set of tasks known as Workflows. As scientific workflows stipulate a process or computation to be executed in the form of data flow and task dependencies that allow users to simply articulate multi-step computational and complex tasks. Hence, proactive fault tolerance is required for the execution of scientific workflows. To reduce the failure effect of workflow tasks on the Cloud resources during execution, task failures can be intelligently predicted by proactively analyzing the data of multiple scientific workflows using the state of the art of machine learning approaches for failure prediction. Therefore, this paper makes an effort to focus on the research problem of designing an intelligent task failure prediction models for facilitating proactive fault tolerance by predicting task failures for Scientific Workflow applications. Firstly, failure prediction models have been implemented through machine learning approaches using evaluated performance metrics and also demonstrates the maximum prediction accuracy for Naive Bayes. Then. the proposed failure models have also been validated using Pegasus and Amazon EC2 by comparing actual task failures with predicted task failures.