Result: Consumerized and peer-tutored service composition

Title:
Consumerized and peer-tutored service composition
Source:
Expert systems with applications. 42(3):1028-1038
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Systèmes d'information. Bases de données, Information systems. Data bases, Assistance utilisateur, User assistance, Asistencia usuario, Calcul réparti, Distributed computing, Cálculo repartido, Cognition sociale, Social cognition, Cognición social, Composition, Composicion, Consommateur, Consumer, Consumidor, Coordination, Coordinación, Créativité, Creativity, Creatividad, Didacticiel, Educational software program, Programa didactico, Développement durable, Sustainable development, Desarrollo sostenible, Entreprise, Firm, Empresa, Evaluation subjective, Subjective evaluation, Evaluación subjetiva, Informatique diffuse, Pervasive computing, Informática difusa, Innovation, Innovación, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Intergiciel publication souscription, Publish subscribe middleware, Intergicial editor suscriptor, Modélisation, Modeling, Modelización, Orienté service, Service oriented, Orientado servicio, Qualité service, Service quality, Calidad servicio, Recommandation, Recommendation, Recomendación, Relation client fournisseur, Supplier customer relationship, Relación cliente proveedor, Réseau social, Social network, Red social, Service web, Web service, Servicio web, Transfert des connaissances, Knowledge transfer, Transferencia conocimiento, Consumérisation, Consumerization, Consumerización, Ingénierie connaissances, Knowledge engineering, Ingeniería del conocimiento, Consumerization of service composition tools, Expertise location S, Knowledge sharing, Peer tutoring, Service composition, ocial matching
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
University of Zagreb. Faculty of Electrical Engineering and Computing, Consumer Computing Lab, Unska 3, 10000 Zagreb, Croatia
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28928434
Database:
PASCAL Archive

Further Information

With continued development towards the Internet of Things, services are making their way from enterprise solutions to our offices and homes. This process is a major driving force in consumerization of IT, because sustainable application development at this scale will not be possible without direct involvement and innovation from consumers themselves. In this paper, we present our work on consumerization of service composition tools. First, we describe how consumer-facing services can be presented in a usable and intuitive way. Then, combining social computing with machine intelligence, we define a recommender system that supports consumers in sharing their knowledge and creativity in peer-tutored service composition, thus empowering consumers to create their own applications. This system recommends consumers with the required service composition knowledge based on mining procedural knowledge stored in previously defined compositions. Once such a group of consumers is identified, social computing tools are used to allow them to share this knowledge with their peers. To demonstrate the effectiveness of this peer-tutored service composition model, we performed consumer satisfaction studies on our consumerized service composition tool Geppeto, which we extended with the described recommender system. Results show significant improvements in service composition in terms of performance and quality of experience.