Treffer: A fast perturbation algorithm using tree structure for privacy preserving utility mining

Title:
A fast perturbation algorithm using tree structure for privacy preserving utility mining
Authors:
Source:
Expert systems with applications. 42(3):1149-1165
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Gestion des mémoires et des fichiers (y compris la protection et la sécurité des fichiers), Memory and file management (including protection and security), Systèmes d'information. Bases de données, Information systems. Data bases, Algorithme rapide, Fast algorithm, Algoritmo rápido, Analyse donnée, Data analysis, Análisis datos, Anonymat, Anonymity, Anonimato, Balayage, Scanning, Exploración, Base de données, Database, Base dato, Confidentialité, Confidentiality, Confidencialidad, Dégradation, Degradation, Degradación, Efficacité, Efficiency, Eficacia, Extensibilité, Scalability, Estensibilidad, Fouille donnée, Data mining, Busca dato, Méthode arborescente, Tree structured method, Método arborescente, Résultat expérimental, Experimental result, Resultado experimental, Structure arborescente, Tree structure, Estructura arborescente, Sécurité informatique, Computer security, Seguridad informatica, Traitement transaction, Transaction processing, Tratamiento transacción, Frequent pattern mining, Perturbation, Privacy preserving, Utility pattern mining
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Engineering, Sejong University, Seoul, Korea, Republic of
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28928444
Database:
PASCAL Archive

Weitere Informationen

As one of the important approaches in privacy preserving data mining, privacy preserving utility mining has been studied to find more meaningful results while database privacy is ensured and to improve algorithm efficiency by integrating fundamental utility pattern mining and privacy preserving data mining methods. However, its previous approaches require a significant amount of time to protect the privacy of data holders because they conduct database scanning operations excessively many times until all important information is hidden. Moreover, as the size of a given database becomes larger and a user-specified minimum utility threshold becomes lower, their performance degradation may be so uncontrollable that they cannot operate normally. To solve this problem, we propose a fast perturbation algorithm based on a tree structure which more quickly performs database perturbation processes for preventing sensitive information from being exposed. We also present extensive experimental results between our proposed method and state-of-the-art algorithms using both real and synthetic datasets. They show the proposed method has not only outstanding privacy preservation performance that is comparable to the previous ones but also 5-10 times faster runtime than that of the existing approaches on average. In addition, the proposed algorithm guarantees better scalability than that of the latest ones with respect to databases with the characteristics of gradually increasing attributes and transactions.