Result: Automated product taxonomy mapping in an e-commerce environment
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
Over the last few years, we have experienced a steady growth in e-commerce. This growth introduces many problems for services that want to aggregate product information and offerings. One of the problems that aggregation services face is the matching of product categories from different Web shops. This paper proposes an algorithm to perform this task automatically, making it possible to aggregate product information from multiple Web sites, in order to deploy it for search, comparison, or recommender systems applications. The algorithm uses word sense disambiguation techniques to address varying denominations between different taxonomies. Path similarity is assessed between source and candidate target categories, based on lexical relatedness and structural information. The main focus of the proposed solution is to improve the disambiguation procedure in comparison to an existing state-of-the-art approach, while coping with product taxonomy-specific characteristics, like composite categories, and re-examining lexical similarity and similarity aggregation in this context. The performance evaluation based on data from three real-world Web shops demonstrates that the proposed algorithm improves the bench-marked approach by 62% on average F1 -measure.