Treffer: Developing an approach to evaluate stocks by forecasting effective features with data mining methods
Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran, Islamic Republic of
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Telecommunications and information theory
Weitere Informationen
In this research, a novel approach is developed to predict stocks return and risks. In this three stage method, through a comprehensive investigation all possible features which can be effective on stocks risk and return are identified. Then. in the next stage risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, on the basis of filter and function-based clustering; the important features in risk and return prediction are selected then risk and return re-predicted. The results show that the proposed hybrid model is a proper tool for effective feature selection and these features are good indicators for the prediction of risk and return. To illustrate the approach as well as to train data and test, we apply it to Tehran Stock Exchange (TSE) data from 2002 to 2011.