Treffer: Self-adaptive attribute weighting for Naive Bayes classification

Title:
Self-adaptive attribute weighting for Naive Bayes classification
Source:
Expert systems with applications. 42(3):1487-1502
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Adaptabilité, Adaptability, Adaptabilidad, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse donnée, Data analysis, Análisis datos, Analyse multicritère, Multicriteria analysis, Análisis multicriterio, Apprentissage probabilités, Probability learning, Aprendizaje probabilidades, Apprentissage supervisé, Supervised learning, Aprendizaje supervisado, Apprentissage(intelligence artificielle), Learning (artificial intelligence), Approche probabiliste, Probabilistic approach, Enfoque probabilista, Banque image, Image databank, Banco imagen, Base de données multidimensionnelle, Multidimensional database, Base dato multidimensional, Critère sélection, Selection criterion, Criterio selección, Efficacité, Efficiency, Eficacia, Estimation Bayes, Bayes estimation, Estimación Bayes, Immunité, Immunity, Inmunidad, Indépendance, Independence, Independencia, Initialisation, Initialization, Inicialización, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Méthode adaptative, Adaptive method, Método adaptativo, Probabilité conditionnelle, Conditional probability, Probabilidad condicional, Raisonnement probabiliste, Probabilistic reasoning, Razonamiento probabilidad, Recherche locale, Local search, Busca local, Spécification donnée, Data specification, Especificación datos, Système immunitaire, Immune system, Sistema inmunitario, Texte, Text, Texto, Traitement image, Image processing, Procesamiento imagen, Vision ordinateur, Computer vision, Visión ordenador, Classification image, Image classification, Clasificación de imágenes, Vie artificielle, Artificial life, Vida artificial, Artificial Immune Systems, Attribute weighting, Evolutionary computing, Naive Bayes, Self-adaptive
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Computer Science, China University of Geosciences, Wuhan 430074, China
Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology, Sydney, NSW 2007, Australia
Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28928469
Database:
PASCAL Archive

Weitere Informationen

Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance.