Result: Weight restrictions in Data Envelopment Analysis: A comprehensive Genetic Algorithm based approach for incorporating value judgments

Title:
Weight restrictions in Data Envelopment Analysis: A comprehensive Genetic Algorithm based approach for incorporating value judgments
Source:
Expert systems with applications. 42(3):1503-1512
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence non paramétrique, Nonparametric inference, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Théorie de la décision. Théorie de l'utilité, Decision theory. Utility theory, Modèles d'entreprises, Firm modelling, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse donnée, Data analysis, Análisis datos, Analyse décision, Decision analysis, Análisis decisión, Analyse enveloppement donnée, Data envelopment analysis, Análisis envolvimiento datos, Analyse multicritère, Multicriteria analysis, Análisis multicriterio, Automobile, Motor car, Automóvil, Distance minimale, Minimal distance, Distancia mínima, Estimation non paramétrique, Non parametric estimation, Estimación no paramétrica, Evaluation performance, Performance evaluation, Evaluación prestación, Flexibilité, Flexibility, Flexibilidad, Gestion entreprise, Firm management, Administración empresa, Gestion intégrée, Integrated management, Gestión integrada, Hiérarchie, Hierarchy, Jerarquía, Jugement, Judgment, Juicio, Modélisation, Modeling, Modelización, Multidisciplinaire, Multidisciplinary, Multidisciplinar, Méthode empirique, Empirical method, Método empírico, Méthode non paramétrique, Non parametric method, Método no paramétrico, Méthodologie, Methodology, Metodología, Pièce rechange, Spare part, Pieza recambio, Prise de décision, Decision making, Toma decision, Processus métier, Business process, Proceso oficio, Préférence, Preference, Preferencia, Résolution problème, Problem solving, Resolución problema, Structuration, Estructuración, Structure hiérarchisée, Hierarchized structure, Estructura jerarquizada, Business analytics, Cross-disciplinary application, Empirical study, Genetic Algorithm, Methodology and tool, Multi-Criteria Decision Making, Problem structuring
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
Sapient Consulting Private Ltd., India
Department of Operations and Supply Chain Management, Opus College of Business, University of St. Thomas, 1000 LaSalle Avenue, Minneapolis, MN 55403-2005, United States
University of Michigan - Dearborn, College of Business Administration, FCS 183, 19000 Hubbard Drive, Dearborn, MI 48126-2638, United States
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Operational research. Management
Accession Number:
edscal.28928470
Database:
PASCAL Archive

Further Information

The basic DEA model experiences the weights flexibility problem which is resolved by the method of weight restrictions. The current research incorporating Decision Makers' (DMs) preferences into weight restrictions is subject to serious limitations such as lacking a framework for dual role factors and not incorporating organizational hierarchy in decision-making. The proposed Genetic Algorithm (GA) based approach for weight restrictions incorporates a dual role factor and organizational hierarchy in decision-making. The approach involves finding a set of weights which are at a minimum distance from all the DMs' preferences. The approach is flexible and is able to generate a common set of weights and Decision Making Unit (DMU) specific weight restrictions simultaneously. Results from model validation in a well-known automobile spare parts manufacturer in India indicate that the majority of suppliers perceived as highly efficient were actually found to be inefficient in the GA based weight restrictions model. A major contribution of this study is a robust approach to deal with multiple DMs and DEA weights flexibility problem. Another key highlight of the research is translating DMs preferences into a distance function. Using that as a fitness measure within the proposed Evolutionary Algorithms has been done for the first time in the presence of multiple DMs.