Treffer: Novel adaptive bacterial foraging algorithms for global optimisation with application to modelling of a TRS

Title:
Novel adaptive bacterial foraging algorithms for global optimisation with application to modelling of a TRS
Source:
Expert systems with applications. 42(3):1513-1530
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Genie mecanique. Construction mecanique, Mechanical engineering. Machine design, Généralités, General, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Microbiologie, Microbiology, Bactériologie, Bacteriology, Motilité, tactismes, Motility, taxis, Algorithme adaptatif, Adaptive algorithm, Algoritmo adaptativo, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse statistique, Statistical analysis, Análisis estadístico, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Bactérie, Bacteria, Chimiotactisme, Chemotaxis, Quimiotactismo, Cycle développement, Life cycle, Ciclo desarrollo, Dimensionnement, Dimensioning, Dimensionamiento, Engin volant autonome, Unmanned aerial vehicle, Máquina autónoma voleando, Fourragement, Foraging behavior, Conducta abastecimiento, Intelligence en essaim, Swarm intelligence, Inteligencia de enjambre, Localisation, Localization, Localización, Modèle dynamique, Dynamic model, Modelo dinámico, Modélisation, Modeling, Modelización, Mouvement cellulaire, Cell motility, Movimiento celular, Méthode adaptative, Adaptive method, Método adaptativo, Optimum global, Global optimum, Optimo global, Rotor hélicoptère, Helicopter rotor, Rotor helicóptero, Réseau neuronal, Neural network, Red neuronal, Système dynamique, Dynamical system, Sistema dinámico, Test paramétrique, Parametric test, Prueba paramétrica, Test rang, Rank test, Test rango, Vitesse convergence, Convergence speed, Velocidad convergencia, Vol stationnaire, Hovering, Vuelo estacionario, Paysage adaptatif, Fitness landscape, Paisaje adaptativo, Adaptive bacterial foraging, Nonparametric modelling, Optimisation algorithm, Twin rotor system
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Automatic Control and Systems Engineering, University of Sheffield, United Kingdom
Department of Electric & Electronics, University Malaysia Pahang, 26600 Pekan Pahang, Malaysia
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mechanical engineering. Mechanical construction. Handling

Microbiology
Accession Number:
edscal.28928471
Database:
PASCAL Archive

Weitere Informationen

In this paper, adaptive bacterial foraging algorithms and their application to solve real world problems is presented. The constant step size in the original bacterial foraging algorithm causes oscillation in the convergence graph where bacteria are not able to reach the optimum location with large step size, hence reducing the accuracy of the final solution. On the contrary, if a small step size is used, an optimal solution may be achieved, but at a very slow pace, thus affecting the speed of convergence. As an alternative, adaptive schemes of chemotactic step size based on individual bacterium fitness value, index of iteration and index of chemotaxis are introduced to overcome such problems. The proposed strategy enables bacteria to move with a large step size at the early stage of the search operation or during the exploration phase. At a later stage of the search operation and exploitation stage where the bacteria move towards an optimum point, the bacteria step size is kept reducing until they reach their full life cycle. The performances of the proposed algorithms are tested with various dimensions, fitness landscapes and complexities of several standard benchmark functions and they are statistically evaluated and compared with the original algorithm. Moreover, based on the statistical result, non-parametric Friedman and Wilcoxon signed rank tests and parametric t-test are performed to check the significant difference in the performance of the algorithms. The algorithms are further employed to predict a neural network dynamic model of a laboratory-scale helicopter in the hovering mode. The results show that the proposed algorithms outperform the predecessor algorithm in terms of fitness accuracy and convergence speed.