Treffer: Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects

Title:
Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects
Source:
Journal of power sources (Print). 273:1073-1083
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 80 ref
Original Material:
INIST-CNRS
Subject Terms:
Electrical engineering, Electrotechnique, Energy, Énergie, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Fabrication microélectronique (technologie des matériaux et des surfaces), Microelectronic fabrication (materials and surfaces technology), Electrotechnique. Electroenergetique, Electrical engineering. Electrical power engineering, Matériaux, Materials, Electroénergétique, Electrical power engineering, Conversion directe et accumulation d'énergie, Direct energy conversion and energy accumulation, Conversion électrochimique: piles et accumulateurs électrochimiques, piles à combustibles, Electrochemical conversion: primary and secondary batteries, fuel cells, Energie, Energy, Energie. Utilisation thermique des combustibles, Energy. Thermal use of fuels, Appareils de production et de conversion d'énergie: énergie thermique, énergie électrique, énergie mécanique, etc, Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc, Piles à combustible, Fuel cells, Acier inoxydable ferritique, Ferritic stainless steel, Acero inoxidable ferrítico, Composé ternaire, Ternary compound, Compuesto ternario, Cuivre Oxyde, Copper Oxides, Cobre Óxido, Fabrication microélectronique, Microelectronic fabrication, Fabricación microeléctrica, Interconnexion, Interconnection, Interconexión, Manganèse Oxyde, Manganese Oxides, Manganeso Óxido, Matériau revêtement, Coating material, Material revestimiento, Pile combustible oxyde solide, Solid oxide fuel cell, Pila combustible oxido sólido, Revêtement, Coatings, Revestimiento, Spinelles, Spinels, Espinelas, Coating, Interconnect, Spinel
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran, Islamic Republic of
Fuel Cell Research Center and Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea, Republic of
ISSN:
0378-7753
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electrical engineering. Electroenergetics

Electronics

Energy
Accession Number:
edscal.28930558
Database:
PASCAL Archive

Weitere Informationen

To protect solid oxide fuel cells (SOFCs) from chromium poisoning and to improve area specific resistance (ASR), Cu1.3Mn1.7O4 is thermally grown on AISI 430 ferritic stainless steel. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy equipped with energy dispersive spectroscopy (FESEM-EDS) and 4-probe ASR tests. The results show that the coating not only decreases the ASR considerably, but also acts as a barrier to mitigate the sub-scale growth and to prevent chromium migration through the coating and the cathode. The EDS analysis reveals that a mixed spinel region is formed between the coating and oxide scale after 500 h oxidation at 750 °C causing a noticeable decrease in oxygen diffusivity through this layer and subsequent decline in sub-scale growth rate. The ASR of uncoated sample is measured to be 63.5 mΩ cm2 after 500 h oxidation, while the Cu1.3Mn1.7O4 spinel coated sample shows a value of 19.3 mΩ cm2 representing ∼70% reduction compared to the uncoated sample. It is proposed that the high electrical conductivity of Cu1.3Mn1.7O4 (140 S cm-1), reduction of oxide scale growth, and good bonding between the coating and substrate contribute to the substantial ASR reduction for the coated sample.