Treffer: ACME: A scalable parallel system for extracting frequent patterns from a very long sequence : Data-intensive cloud infrastructure
Qatar Computing Research Institute, Doha, Qatar
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Computer science; theoretical automation; systems
Generalities in biological sciences
Weitere Informationen
Modern applications, including bioinformatics, time series, and web log analysis, require the extraction of frequent patterns, called motifs, from one very long (i.e., several gigabytes) sequence. Existing approaches are either heuristics that are error-prone, or exact (also called combinatorial) methods that are extremely slow, therefore, applicable only to very small sequences (i.e., in the order of megabytes). This paper presents ACME, a combinatorial approach that scales to gigabyte-long sequences and is the first to support supermaximal motifs. ACME is a versatile parallel system that can be deployed on desktop multi-core systems, or on thousands of CPUs in the cloud. However, merely using more compute nodes does not guarantee efficiency, because of the related overheads. To this end, ACME introduces an automatic tuning mechanism that suggests the appropriate number of CPUs to utilize, in order to meet the user constraints in terms of run time, while minimizing the financial cost of cloud resources. Our experiments show that, compared to the state of the art, ACME supports three orders of magnitude longer sequences (e.g., DNA for the entire human genome); handles large alphabets (e.g., English alphabet for Wikipedia); scales out to 16,384 CPUs on a supercomputer; and supports elastic deployment in the cloud. .