Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: TREC-2 routing and ad-hoc retrieval evaluation using the INQUERY system

Title:
TREC-2 routing and ad-hoc retrieval evaluation using the INQUERY system
Source:
TREC-2: Text retrieval conferenceNIST special publication. (500215):75-83
Publisher Information:
Gaithersburg, MD: National Institute of Standards and Technology, 1994.
Publication Year:
1994
Physical Description:
print, 7 ref
Original Material:
INIST-CNRS
Subject Terms:
Science technology, industry, Sciences et technologies, industries, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Sciences de l'information. Documentation, Information science. Documentation, Systèmes de recherche d'informations. Système de gestion documentaire et d'information, Information retrieval systems. Information and document management system, Systèmes de recherche d'information, Information retrieval systems, Sciences de l'information et de la communication, Information and communication sciences, Système de recherche documentaire. Système de gestion documentaire et d'information, Informatique documentaire, Documentation data processing, Información documental, Analyse linguistique, Linguistic analysis, Análisis linguístico, Analyse statistique, Statistical analysis, Análisis estadístico, Anglais, English, Inglés, Apprentissage, Learning, Aprendizaje, Conception système, System design, Concepción sistema, Dispositif expérimental, Experimental device, Dispositivo experimental, Evaluation système, System evaluation, Evaluación sistema, Grande dimension, Large dimension, Gran dimensión, Japonais, Japanese, Japonés, Modèle, Models, Modelo, Moteur inférence, Inference motor, Motor inferencia, Pertinence, Relevance, Pertinencia, Recherche documentaire, Document retrieval, Recuperación documental, Rétroaction, Feedback regulation, Retroacción, Système recherche, Search system, Sistema investigación, Texte intégral, Full text, Texto completo, Traitement langage, Language processing, Tratamiento lenguaje, Collection test, Test collection, INQUIRY, Orienté description, Description oriented, TREC-2
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Univ. Massachusetts, computer sci. dep., Amherst MA 01003, United States
ISSN:
1048-776X
Rights:
Copyright 1995 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.3459612
Database:
PASCAL Archive

Weitere Informationen

The ARPA TIPSTER project which is the source of the data and funding for TREC, has involved four sites in the area of text retrieval and routing. The TIPSTER project in the information Retrieval of the Computer Science Department, University of Massachussetts, Amherst (which includes MCC as a subcontractor), has focused on the following goals: improving the effectiveness of information retrieval techniques for large, full-text databases; 2: improving the effectiveness of routing techiques appropriate for long-term information needs; 3- Demonstrating the effectiveness of these retrieval and routinq techniques for Japanese full text database. Our general approach to achieve these goals has been to use improved representations of text and information needs in the framework of a new model of retrieval. This model uses Bayesian netwoks to describe how text and queries should be uses to identify relevant document. Retrieval (and routing) is viewed as a probabilistic inference process whic compares text representations based on different forms of linguistic and statistical evidence to representations of information needs. Learnin techniques are uses to modify the initial query both for short-terme and long-term information needs (relevance feedback and routing, respectively).