Treffer: On expanding query vectors with lexically related words

Title:
On expanding query vectors with lexically related words
Authors:
Source:
TREC-2: Text retrieval conferenceNIST special publication. (500215):223-231
Publisher Information:
Gaithersburg, MD: National Institute of Standards and Technology, 1994.
Publication Year:
1994
Physical Description:
print, 6 ref
Original Material:
INIST-CNRS
Subject Terms:
Science technology, industry, Sciences et technologies, industries, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Sciences de l'information. Documentation, Information science. Documentation, Systèmes de recherche d'informations. Système de gestion documentaire et d'information, Information retrieval systems. Information and document management system, Systèmes de recherche d'information, Information retrieval systems, Sciences de l'information et de la communication, Information and communication sciences, Système de recherche documentaire. Système de gestion documentaire et d'information, Informatique documentaire, Documentation data processing, Información documental, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Linguistique appliquée, Applied linguistics, Linguística aplicada, Ambiguité, Ambiguity, Ambiguedad, Assistance ordinateur, Computer aid, Asistencia ordenador, Base connaissance, Knowledge base, Base conocimiento, Condition, Condición, Dispositif expérimental, Experimental device, Dispositivo experimental, Essai, Test, Ensayo, Evaluation performance, Performance evaluation, Evaluación prestación, Expansion, Expansión, Grande dimension, Large dimension, Gran dimensión, Indexation, Indexing, Indización, Lexique, Lexicon, Léxico, Mot clé, Keyword, Palabra clave, Question documentaire, Query, Pregunta documental, Recherche développement, Research and development, Investigación desarrollo, Relation sémantique, Semantic relation, Relación semántica, Système documentaire, Document retrieval system, Sistema recuperación documental, Texte intégral, Full text, Texto completo, Vecteur, Vector, Base donnée lexicale, Lexical database, Expansion question, Query expansion, Modèle espace vectoriel, Vector space model, Orienté concept, Concept oriented, TREC-2
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Siemens Corp. Research, Inc., Princeton NJ 08540, United States
ISSN:
1048-776X
Rights:
Copyright 1995 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.3464818
Database:
PASCAL Archive

Weitere Informationen

Experiments performed on small collections suggest that expanding query vectors with words that are lexically related to the original query words can improve retrieval effectiveness. Prior experiments using WordNet to automatically expand vectors in the TREC-1 collection were inconclusinve regarding effectivenss gains from lexically related words since any such effects were dominitad by the choice of words to expand. This paper specifically investigates the effect of expansion by selecting query concepts to be expanded by hand. Concepts are represented by WordNet synonyms sets and are expanded by following the typed links included in WordNet. Experimental results suggest taht this query expansion technique makes little difference in retrieval effectiveness within the TREC environment, presumably because the TREC topic statement provide such a rich description of the information being sought.