Treffer: Query expansion and neural network

Title:
Query expansion and neural network
Source:
Intelligent multimedia information retrieval systems and management (New York NY, October 11-12, 1994). :519-532
Publisher Information:
Paris: CID, 1994.
Publication Year:
1994
Physical Description:
print, 2 p
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Univ. sci. Limoges, MSI, dep. informatique, 87060 Limoges, France
Univ. Paul Sabatier, IRIT/SIG, 31062 Toulouse, France
Rights:
Copyright 1995 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.3553817
Database:
PASCAL Archive

Weitere Informationen

Automatic query expansion methods has historically been an important method for increasing the performance of Information Retreival Systems (IRS). In this paper, we present an IRS based on three-layer neural network. This network is able to adapt itself to the user's needs by restructuring the information in the base, on the basis of the user's reaction to the retrieved documents. In other words, the user's judgments of the relevance or of the non relevance documents are used to modify the weighted links connecting different term nodes in the network. The preliminary results indicate the usefulness of neural netrworks in adaptative information retrieval system.