Treffer: Learned vector-space models for document retrieval

Title:
Learned vector-space models for document retrieval
Source:
TREC-2 : text retrieval conferenceInformation processing & management. 31(3):419-429
Publisher Information:
Oxford: Elsevier Science, 1995.
Publication Year:
1995
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
HNC Inc., San Diego CA 91121, United States
ISSN:
0306-4573
Rights:
Copyright 1995 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.3601538
Database:
PASCAL Archive

Weitere Informationen

Discusses two different approaches to radical extensions of the vector space model. Bellcore's Latent Semantic Indexing (LSI) and MatchPlus examine the similarity of the contexts in which words appear and create a features space representation in which words that occur in similar contexts have vector representation near each other.