Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Modeling, analysis, and visualization of left ventricle shape and motion by hierarchical decomposition

Title:
Modeling, analysis, and visualization of left ventricle shape and motion by hierarchical decomposition
Source:
IEEE transactions on pattern analysis and machine intelligence. 16(4):342-356
Publisher Information:
Los Alamitos, CA: IEEE Computer Society, 1994.
Publication Year:
1994
Physical Description:
print, 38 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Univ. Rochester, dep. electrical eng., Rochester NY 14627-0231, United States
ISSN:
0162-8828
Rights:
Copyright 1994 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.4136469
Database:
PASCAL Archive

Weitere Informationen

This paper presents an approach to the modeling, analysis, and visualization of left ventricle motion and deformation. Our modeling of left ventricle shape and motion as a hierarchical representation enables us to develop a promising noninvasive technique for monitoring heart dynamics where both image analysis and image synthesis are involved. The proposed hierarchical motion model of left ventricle is constructed by combining several existing simple models and is able to capture major motion and deformation components of the left ventricle. The hierarchical decomposition characterizes the left ventricle motion and deformation in a coarse-to-fine fashion and leads to computationally efficient estimation algorithms.