Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: INN: an intelligent negotiating neural network for information systems: a design model

Title:
INN: an intelligent negotiating neural network for information systems: a design model
Authors:
Source:
Information processing & management. 30(5):663-685
Publisher Information:
Oxford: Elsevier Science, 1994.
Publication Year:
1994
Physical Description:
print, 43 ref
Original Material:
INIST-CNRS
Subject Terms:
Information and communication sciences, Sciences de l'information communication, Documentation, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Sciences de l'information. Documentation, Information science. Documentation, Systèmes de recherche d'informations. Système de gestion documentaire et d'information, Information retrieval systems. Information and document management system, Systèmes de recherche d'information, Information retrieval systems, Sciences de l'information et de la communication, Information and communication sciences, Système de recherche documentaire. Système de gestion documentaire et d'information, Connexionnisme, Connectionism, Conexionismo, Informatique documentaire, Documentation data processing, Información documental, Accès par sujet, Subject access, Acceso por tema, Apprentissage, Learning, Aprendizaje, Base connaissance, Knowledge base, Base conocimiento, Catalogue automatisé, Automated catalog, Catálogo automatizado, Conception système, System design, Concepción sistema, Interface utilisateur, User interface, Interfase usuario, Modèle, Models, Modelo, Multicouche, Multiple layer, Capa múltiple, Question documentaire, Query, Pregunta documental, Raisonnement, Reasoning, Razonamiento, Recherche bibliographique, Bibliographic search, Investigación bibliográfica, Réseau neuronal, Neural network, Red neuronal, Système intelligent, Intelligent system, Sistema inteligente, Graphe conceptuel, Conceptual graph, INN (Intelligent Negotiating Neural Network), Negotiation question, Query negotiation, Reformulation, Traitement question, Question processing
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Valdosta state univ., dep. mathematics computer sci., Valdosta GA 31698, United States
ISSN:
0306-4573
Rights:
Copyright 1994 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.4169384
Database:
PASCAL Archive

Weitere Informationen

Research on the use of online catalogs reveals that information retrieval by subject is the most common form, but the least successful. Most problems are attributed to users'search terms, which are either too broad or too specific. We present an Intelligent Negotiating Neural Network (INN) design model for solving this aspect of online catalogs. The network is designed to act as an electronic information specialist capable of learning to negotiate a patron's query and translate it into a true, well formulated statement prior to accessing an online catalog. The network's architecture includes four dimensions: conceptual graphs for queries, inheritance and recognition, knowledge base, and modules. The architecture corresponds to four elements of th etraditional query negociation interview performed by information specialists. These are: query/concept; type of sources:answer-providing tools; types of literature; and time frame. Three different sessions of the user interface are presented: negociation of a narrowly stated query; and negociation of a query for which concepts are nonexistent in the knowledge base.