Treffer: Indexing functions and time lower bounds for sorting on a mesh-connected computer

Title:
Indexing functions and time lower bounds for sorting on a mesh-connected computer
Source:
Discrete applied mathematics. 36(2):141-152
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 1992.
Publication Year:
1992
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Univ. Kentucky, dep. computer sci., Lexington KY 40506-0027, United States
ISSN:
0166-218X
Rights:
Copyright 1993 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.4431761
Database:
PASCAL Archive

Weitere Informationen

We introduce a parameter of indexing functions and show its relation to lower bounds for sorting algorithms on mesh-connected computers that follow from the Chain Theorem. We give lower and upper bounds for the parameter. Conclusions from our results are : (1) no matter what indexing function is used any sorting algorithm must execute 2.27n+Θ(1) steps; (2) the best lower bound true for all indexing functions that we can hope to prove by the Chain Theorem argument is 2.5n+Θ(1).