Treffer: The most vital edges in the minimum spanning tree problem

Title:
The most vital edges in the minimum spanning tree problem
Source:
Information processing letters. 45(1):25-31
Publisher Information:
Amsterdam: Elsevier Science, 1993.
Publication Year:
1993
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
National Tsing Hua univ., dep. industrial eng., Hsinchu 30043, Tawain, Province of China
ISSN:
0020-0190
Rights:
Copyright 1993 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.4753918
Database:
PASCAL Archive

Weitere Informationen

Let G(N; A) be a connected, undirected and weighted network with node set N and edge set A. Suppose that there is an available budget to spend on removing edges and there is removal cost associated with each edge. The most vital edges problem is to find a set of edges such that the total removal cost is not greater than the available budget and whose removal from G(N; A) results in the greatest increase in the total weight of a minimum spanning tree. We show that this problem is NP-hard and propose a branch and bound algorithm to solve it.