Treffer: Computation of the GCD of polynomials using gaussian transformations and shifting

Title:
Computation of the GCD of polynomials using gaussian transformations and shifting
Source:
International Journal of Control. 58(1):211-228
Publisher Information:
London: Taylor & Francis, 1993.
Publication Year:
1993
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Control eng. cent., dep. electrical electronic information eng., London EC1V 0HB, United Kingdom
ISSN:
0020-7179
Rights:
Copyright 1993 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.4788996
Database:
PASCAL Archive

Weitere Informationen

A new numerical method for the computation of the greatest common divisor (GCD) of an m-set of polynomials of R[s], Pm,d of maximal degree d, is presented. This method is based on a recently developed theoretical algorithm (Karcanias 1987) that uses elementary transformations and shifting operations; the present algorithm takes into account the non-generic nature of GCD and thus uses steps, which minimize the introduction of additional errors and defines the GCD in an approximate sense. For a given set Pm,d with a basis matrix Pm, the method defines first, the most orthogonal uncorrupted base Pr from the rows of Pm, where r=rank (Pm)≤m.