Treffer: Error estimates for moving least square approximations

Title:
Error estimates for moving least square approximations
Source:
Applied numerical mathematics. 37(3):397-416
Publisher Information:
Amsterdam: Elsevier, 2001.
Publication Year:
2001
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Approximation numérique, Numerical approximation, Analyse de l'erreur, Error analysis, Equations différentielles, Ordinary differential equations, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Approximation fonction, Function approximation, Approximation optimale, Optimal approximation, Aproximación óptima, Comportement, Behavior, Conducta, Convection, Convección, Diffusion(transport), Diffusion, Distribution, Distribución, Dérivée seconde, Second derivative, Derivada segunda, Equation convection diffusion, Convection diffusion equation, Ecuación convección difusión, Equation convection, Convection equation, Ecuación convección, Equation diffusion, Diffusion equation, Ecuación difusión, Equation différentielle, Differential equation, Ecuación diferencial, Erreur approximation, Approximation error, Error aproximación, Estimation erreur, Error estimation, Estimación error, Exemple, Example, Ejemplo, Fonction poids, Weight function, Función peso, Fonction répartition, Distribution function, Función distribución, Fonction symétrique, Symmetric function, Función simétrica, Méthode Galerkin, Galerkin method, Método Galerkin, Méthode moindre carré, Least squares method, Método cuadrado menor, Méthode numérique, Numerical method, Método numérico, Poids, Weight, Peso, Solution numérique, Numerical solution, Vent, Wind, Viento, MLS method, Moving least square method
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, 1428 Buenos Aires, Argentina
ISSN:
0168-9274
Rights:
Copyright 2001 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.986957
Database:
PASCAL Archive

Weitere Informationen

In this paper we obtain error estimates for moving least square approximations in the one-dimensional case. For the application of this method to the numerical solution of differential equations it is fundamental to have error estimates for the approximations of derivatives. We prove that, under appropriate hypothesis on the weight function and the distribution of points, the method produces optimal order approximations of the function and its first and second derivatives. As a consequence, we obtain optimal order error estimates for Galerkin approximations of coercive problems. Finally, as an application of the moving least square method we consider a convection-diffusion equation and propose a way of introducing up-wind by means of a non-symmetric weight function. We present several numerical results showing the good behavior of the method.