Treffer: Algorithmic enablers for compact neural network topology hardware design: review and trends

Title:
Algorithmic enablers for compact neural network topology hardware design: review and trends
Contributors:
Département d'Optronique (DOPT), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département d'Architectures, Conception et Logiciels Embarqués-LETI (DACLE-LETI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Département d'Architectures, Conception et Logiciels Embarqués-LIST (DACLE-LIST), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), European Project: 783127,H2020-ECSEL-2017-1-IA-two-stage,H2020-ECSEL-2017-1-IA-two-stage,OCEAN12(2018)
Publisher Information:
CCSD; IEEE, 2020.
Publication Year:
2020
Collection:
collection:CEA
collection:UGA
collection:DSV
collection:DRT
collection:CEA-DRF
collection:LETI
collection:LIST
collection:CEA-GRE
collection:UGA-EPE
collection:GS-COMPUTER-SCIENCE
collection:GS-SPORT-HUMAN-MOVEMENT
collection:DSCIN
collection:TEST-UGA
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/ISCAS45731.2020.9181005; info:eu-repo/grantAgreement//783127/EU/Opportunity to Carry European Autonomous driviNg further with FDSOI technology up to 12nm node/OCEAN12
DOI:
10.1109/ISCAS45731.2020.9181005
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.cea.04555846v1
Database:
HAL

Weitere Informationen

This paper reports the main State-Of-The-Art algorithmic enablers for compact Neural Network topology design, while relying on basic numerical experiments. Embedding insensor intelligence to perform inference tasks generally requires a proper definition of a Neural Network architecture dedicated to specific purposes under Hardware limitations. Hardware design constraints known as power consumption, silicon surface, latency and maximum clock frequency cap available resources related to the topology, i.e., memory capacity and algorithmic complexity. We propose to categorize into 4 types the algorithmic enablers that force the hardware constraints as low as possible while keeping the accuracy as high as possible. First, Dimensionality Reduction (DR) is used to reduce memory needs thanks to predefined, hardware-coded patterns. Secondly, low-precision Quantization with Normalization (QN) can both simplify hardware components as well as limiting overall data storage. Thirdly, Connectivity Pruning (CP) involves an improvement against over-fitting while limiting needless computations. Finally, during the inference at the feed-forward pass, a Dynamical Selective Execution (DSE) of topology parts can be performed to limit the activation of the entire topology, therefore reducing the overall power consumption.