Result: The maximum f-depth Spanning tree problem

Title:
The maximum f-depth Spanning tree problem
Authors:
Contributors:
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Source:
Information Processing Letters. 80:179-187
Publisher Information:
CCSD; Elsevier, 2001.
Publication Year:
2001
Collection:
collection:CNRS
collection:UNIV-DAUPHINE
collection:LAMSADE-DAUPHINE
collection:PSL
collection:UNIV-DAUPHINE-PSL
collection:TEST3-HALCNRS
Original Identifier:
HAL: hal-00004001
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
0020-0190
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00004001v1
Database:
HAL

Further Information

This paper deals with the problem of constructing directed trees of optimal weight and root r with depth at most f(|V|) (called f-depthDSTP_r). We first prove that the maximization and the minimization versions are equal-approximable under the differential ratio, that measures how the value of an approximate solution is placed in the interval between the worst and the best solutions values of an instance. We show that both problems can be approximately solved, in polynomial time, within differential ratio bounded above by (lim inf f-1)/lim inf f. Next, we demonstrate that, when dealing with edge distances 1and 2,undirected graphs and f(n)=2 (called 2-depthSTP_r[1,2]), we improve the ratio to 3/4. Based upon these results, we obtain new bounds for standard ratio} a (lim inf f-1)/lim inf f-standard approximation for Max f-depthDSTP_r which can be improved to 4/5 for Min 2-depthSTP_r[1,2] and 7/8 for Max 2-depthSTP_r[1,2].