Treffer: approximation results for the Traveling Salesman and related Problems

Title:
approximation results for the Traveling Salesman and related Problems
Authors:
Contributors:
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Source:
Information Processing Letters. 82:229-235
Publisher Information:
CCSD; Elsevier, 2002.
Publication Year:
2002
Collection:
collection:CNRS
collection:UNIV-DAUPHINE
collection:LAMSADE-DAUPHINE
collection:TDS-MACS
collection:PSL
collection:UNIV-DAUPHINE-PSL
Original Identifier:
HAL: hal-00004015
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0020-0190
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00004015v1
Database:
HAL

Weitere Informationen

This paper deals with the problem of constructing a Hamiltonian cycle of optimal weight, called TSP. We show that TSP is 2/3-differential approximable and can not be differential approximable greater than 649/650. Next, we demonstrate that, when dealing with edge-costs 1 and 2, the same algorithm idea improves this ratio to 3/4 and we obtain a differential non-approximation threshold equal to 741/742. Remark that the 3/4-differential approximation result have been recently proved by a way more specific to the 1,2-case and with another algorithm in the recent conference (symposia on Fundamentals of Computation Theory 2001). Based upon these results, we establish new bounds for standard ratio: 5/6 for Max TSP[a,2a] and 7/8 for Max TSP[1,2]. We also derive some approximation results on partition graph problems by paths.