Treffer: Cellular Computing and Least Squares for partial differential problems parallel solving
Title:
Cellular Computing and Least Squares for partial differential problems parallel solving
Authors:
Contributors:
Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CentraleSupélec-Université de Lorraine (UL), IMS : Information, Multimodalité & Signal, SUPELEC-Campus Metz, Ecole Supérieure d'Electricité - SUPELEC (FRANCE)-Ecole Supérieure d'Electricité - SUPELEC (FRANCE)
Source:
Journal of Cellular Automata. 9(1):1-21
Publisher Information:
CCSD; Old City Publishing, 2014.
Publication Year:
2014
Collection:
collection:SUPELEC
collection:EC-PARIS
collection:SUP_LMOPS
collection:CENTRALESUPELEC
collection:UNIV-LORRAINE
collection:TDS-MACS
collection:CENTRALESUPELEC-SACLAY
collection:LMOPS-PHOTONIQUE
collection:M4-UL
collection:EC-PARIS
collection:SUP_LMOPS
collection:CENTRALESUPELEC
collection:UNIV-LORRAINE
collection:TDS-MACS
collection:CENTRALESUPELEC-SACLAY
collection:LMOPS-PHOTONIQUE
collection:M4-UL
Subject Terms:
Partial Differential Systems, Least Squares, Formal computing, Cellular Computing, PACS 02.30.Jr, 02.60.Cb, 02.60.Jh, 02.60.Lj, [PHYS.MPHY]Physics [physics], Mathematical Physics [math-ph], [MATH.MATH-MP]Mathematics [math], [MATH.MATH-AP]Mathematics [math], Analysis of PDEs [math.AP], [INFO.INFO-DC]Computer Science [cs], Distributed, Parallel, and Cluster Computing [cs.DC]
Original Identifier:
ARXIV: math-ph/0610037
HAL: hal-00107064
HAL: hal-00107064
Document Type:
Zeitschrift
article<br />Journal articles
Language:
English
ISSN:
1557-5969
1557-5977
1557-5977
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/math-ph/0610037
Access URL:
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00107064v8
Database:
HAL
Weitere Informationen
The pre-print archived version is not the one that is published, as the editor does not formally allow it.
This paper shows how partial differential problems can be solved thanks to cellular computing and an adaptation of the Least Squares Finite Elements Method. As cellular computing can be implemented on distributed parallel architectures, this method allows the distribution of a resource demanding differential problem over a computer network.