Result: Asymptotic normality of randomly truncated stochastic algorithms
Title:
Asymptotic normality of randomly truncated stochastic algorithms
Authors:
Contributors:
Mathématiques financières (MATHFI), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)
Source:
ESAIM: Probability and Statistics. 17:105-119
Publisher Information:
CCSD; EDP Sciences, 2013.
Publication Year:
2013
Collection:
collection:ENPC
collection:UGA
collection:CNRS
collection:UNIV-GRENOBLE1
collection:UNIV-PMF_GRENOBLE
collection:INPG
collection:INSMI
collection:PARISTECH
collection:LJK
collection:LJK_PS
collection:LJK_PS_MATHFI
collection:UGA-TEST-QUATER
collection:TDS-MACS
collection:TEST-UGA
collection:UGA
collection:CNRS
collection:UNIV-GRENOBLE1
collection:UNIV-PMF_GRENOBLE
collection:INPG
collection:INSMI
collection:PARISTECH
collection:LJK
collection:LJK_PS
collection:LJK_PS_MATHFI
collection:UGA-TEST-QUATER
collection:TDS-MACS
collection:TEST-UGA
Subject Terms:
Original Identifier:
HAL: hal-00464380
Document Type:
Journal
article<br />Journal articles
Language:
English
ISSN:
1292-8100
1262-3318
1262-3318
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1051/ps/2011110
DOI:
10.1051/ps/2011110
Access URL:
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00464380v2
Database:
HAL
Further Information
We study the convergence rate of randomly truncated stochastic algorithms, which consist in the truncation of the standard Robbins-Monro procedure on an increasing sequence of compact sets. Such a truncation is often required in practice to ensure convergence when standard algorithms fail because the expected-value function grows too fast. In this work, we give a self contained proof of a central limit theorem for this algorithm under local assumptions on the expected-value function, which are fairly easy to check in practice.