Result: Fitting genetic algorithms to distributed online evolution of network protocols

Title:
Fitting genetic algorithms to distributed online evolution of network protocols
Contributors:
Models for the performance analysis and the control of networks (MAESTRO), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Center for REsearch And Telecommunication Experimentation for NETworked communities (CREATE-NET), Microsoft Research - Inria Joint Centre (MSR - INRIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation [Redmond, Wash.], European Project: 34537,BIONETS
Source:
Computer Networks. 54(18):3402-3420
Publisher Information:
CCSD; Elsevier, 2010.
Publication Year:
2010
Collection:
collection:INRIA
collection:INRIA-SOPHIA
collection:INRIASO
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:UNIV-COTEDAZUR
collection:INRIA-ETATSUNIS
collection:INRIA-ROYAUMEUNI
Original Identifier:
HAL: hal-00640798
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
1389-1286
1872-7069
Relation:
https://inria.hal.science/hal-00640974v1; https://inria.hal.science/hal-00641273v1; info:eu-repo/semantics/altIdentifier/doi/10.1016/j.comnet.2010.06.015; info:eu-repo/grantAgreement//34537/EU/BIOlogically-inspired autonomic NETworks and Services/BIONETS
DOI:
10.1016/j.comnet.2010.06.015
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00640798v1
Database:
HAL

Further Information

In this work, we introduce a framework for enabling the on-line evolution of network protocols. The proposed approach is based on the use of techniques and tools drawn from evolutionary computing research, and it enables embedding evolutionary features in the operation of network protocols. In this way, it becomes possible to build a system in which the operation of the network changes at run-time to adapt to the current conditions. As a case study, we apply the proposed framework to the evolution of forwarding schemes in intermittently connected wireless networks. Simulation results are reported to validate the ability of the proposed scheme to converge to the optimal operating point and to explore the various trade-offs deriving from its design and implementation.