Treffer: Average-case analysis of perfect sorting by reversals

Title:
Average-case analysis of perfect sorting by reversals
Contributors:
Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics [Burnaby] (SFU), Simon Fraser University = Université Simon Fraser (SFU.ca), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS), ANR-10-BLAN-0204,MAGNUM,Méthodes Algorithmiques de Génération aléatoire Non Uniforme, Modèles et applications.(2010)
Source:
Discrete Mathematics. 3(3):369-392
Publisher Information:
CCSD; World Scientific Publishing, 2011.
Publication Year:
2011
Collection:
collection:X
collection:CNRS
collection:ENSEIRB
collection:LIX
collection:UNIV-BORDEAUX
collection:X-LIX
collection:X-DEP
collection:X-DEP-INFO
collection:LIX_EMC
collection:ANR
collection:UNIVERSITE-BORDEAUX
collection:DEPARTEMENT-DE-MATHEMATIQUES
Original Identifier:
ARXIV: 1201.0940
HAL: hal-00649761
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
1793-8309
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/1201.0940; info:eu-repo/semantics/altIdentifier/doi/10.1142/S1793830911001280
DOI:
10.1142/S1793830911001280
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00649761v1
Database:
HAL

Weitere Informationen

A preliminary version of this work appeared in the proceedings of Combinatorial Pattern Matching (CPM) 2009. See arXiv:0901.2847; Discrete Mathematics, Algorithms and Applications, vol. 3(3), 2011
Perfect sorting by reversals, a problem originating in computational genomics, is the process of sorting a signed permutation to either the identity or to the reversed identity permutation, by a sequence of reversals that do not break any common interval. Bérard et al. (2007) make use of strong interval trees to describe an algorithm for sorting signed permutations by reversals. Combinatorial properties of this family of trees are essential to the algorithm analysis. Here, we use the expected value of certain tree parameters to prove that the average run-time of the algorithm is at worst, polynomial, and additionally, for sufficiently long permutations, the sorting algorithm runs in polynomial time with probability one. Furthermore, our analysis of the subclass of commuting scenarios yields precise results on the average length of a reversal, and the average number of reversals. A preliminary version of this work appeared in the proceedings of Combinatorial Pattern Matching (CPM) 2009, Lectures Notes in Computer Science, vol. 5577, pp. 314--325, Springer.