Result: A sequential Monte Carlo approach for MLE in a plant growth model

Title:
A sequential Monte Carlo approach for MLE in a plant growth model
Contributors:
Modélisation de la croissance et de l'architecture des plantes (DIGIPLANTE), Mathématiques Appliquées aux Systèmes - EA 4037 (MAS), Ecole Centrale Paris-Ecole Centrale Paris-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Ecole Centrale Paris
Source:
Journal of Agricultural.
Publisher Information:
CCSD; Springer Verlag, 2013.
Publication Year:
2013
Collection:
collection:CIRAD
collection:EC-PARIS
collection:INRIA
collection:INRIA-SACLAY
collection:INRIA_TEST
collection:ECP-DR
collection:MAS
collection:TESTALAIN1
collection:INRIA2
collection:MICS
collection:AGREENIUM
Original Identifier:
HAL: hal-00796154
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
1085-7117
1537-2693
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13253-013-0134-1
DOI:
10.1007/s13253-013-0134-1
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00796154v1
Database:
HAL

Further Information

Parametric identification of plant growth models formalized as discrete dynamical systems is a challenging problem due to specific data acquisition (system observation is generally done with destructive measurements), non-linear dynamics, model uncertainties and high-dimensional parameter space. In this study, we present a novel idea of modeling plant growth in the framework of non-homogeneous hidden Markov models (Cappé et al., 2005), for a certain class of plants with known organogenesis (structural development). Unknown parameters of the models are estimated via a stochastic variant of a generalised EM (Expectation-Maximization) algorithm and approximate confidence intervals are given via parametric bootstrap. The complexity of the model makes both the E-step and the M-step non-explicit. For this reason, the E-step is approximated via a sequential Monte-Carlo procedure (sequential importance sampling with resampling) and the M-step is separated into two steps (Conditional-Maximization), where before applying a numerical maximization procedure (quasi-Newton type), a large subset of unknown parameters is updated explicitly conditioned on the other subset. A simulation study and a case-study with real data from the sugar-beet are considered and a model comparison is performed based on these data. Appendices are available online.