Treffer: Polynomial Approximation for Multicriteria Combinatorial Optimization Problems

Title:
Polynomial Approximation for Multicriteria Combinatorial Optimization Problems
Contributors:
Informatique, Biologie Intégrative et Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE), Recherche Opérationnelle (RO), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Vangelis Th. Paschos
Source:
Vangelis Th. Paschos. Paradigms of Combinatorial Optimization: Problems and New Approaches: 2nd Edition. :511-545
Publisher Information:
CCSD; John Wiley & Sons, 2014.
Publication Year:
2014
Collection:
collection:UPMC
collection:CNRS
collection:UNIV-DAUPHINE
collection:UNIV-EVRY
collection:IBISC
collection:IBISC-AROBAS
collection:LIP6
collection:LAMSADE-DAUPHINE
collection:TDS-MACS
collection:PSL
collection:UPMC_POLE_1
collection:SORBONNE-UNIVERSITE
collection:SU-SCIENCES
collection:UNIV-DAUPHINE-PSL
collection:ALLIANCE-SU
Original Identifier:
HAL: hal-00919601
Document Type:
Buch bookPart<br />Book sections
Language:
English
ISBN:
978-1-84821-148-3
978-1-118-60020-7
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1002/9781118600207.ch16
DOI:
10.1002/9781118600207.ch16
Accession Number:
edshal.hal.00919601v1
Database:
HAL

Weitere Informationen

Combinatorial optimization problems serve as models for a great number of real problems, and are studied in order to construct algorithms that are effective in terms of complexity and of the quality of the solutions returned. This chapter begins approximation algorithms with performance guarantees, it refer readers who want information on the other approaches to some publications and the references that they contain. The chapter contains a general presentation of multicriteria problems in combinatorial optimization, and tackles notions of optimality and of complexity. It presents four general approaches to polynomial approximation with performance guarantees. Furthermore, each approach is illustrated with an example from various publications. There are four of these approaches: the criteria weighting approach; the simultaneous approach; the budget approach; the Pareto curve approach.