Treffer: Subformula Linking as an Interaction Method

Title:
Subformula Linking as an Interaction Method
Contributors:
Proof search and reasoning with logic specifications (PARSIFAL), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source:
4th Conference on Interactive Theorem Proving. :386-401
Publisher Information:
CCSD; Springer, 2013.
Publication Year:
2013
Collection:
collection:X
collection:CNRS
collection:INRIA
collection:LIX
collection:LIX-PARSIFAL
collection:INRIA-SACLAY
collection:X-LIX
collection:X-DEP
collection:X-DEP-INFO
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
Subject Geographic:
Original Identifier:
HAL: hal-00937009
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-39634-2_28
DOI:
10.1007/978-3-642-39634-2_28
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.00937009v1
Database:
HAL

Weitere Informationen

Current techniques for building formal proofs interactively involve one or several proof languages for instructing an interpreter of the languages to build or check the proof being described. These linguistic approaches have a drawback: the languages are not generally portable, even though the nature of logical reasoning is universal. We propose a somewhat speculative alternative method that lets the user directly manipulate the text of the theorem, using non-linguistic metaphors. It uses a proof formalism based on linking subformulas, which is a variant of deep inference (inference rules are allowed to apply in any formula context) where the relevant formulas in a rule are allowed to be arbitrarily distant. We substantiate the design with a prototype implementation of a linking-based interactive prover for first-order classical linear logic.