Treffer: Activity Identification and Local Linear Convergence of Douglas–Rachford/ADMM under Partial Smoothness

Title:
Activity Identification and Local Linear Convergence of Douglas–Rachford/ADMM under Partial Smoothness
Contributors:
Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Mathematics Department [Gottingen] (NAM), Georg-August-University of Göttingen = Georg-August-Universität Göttingen, European Project
Source:
SSVM 2015 - International Conference on Scale Space and Variational Methods in Computer Vision. :642-653
Publisher Information:
CCSD, 2015.
Publication Year:
2015
Collection:
collection:CNRS
collection:UNIV-DAUPHINE
collection:ENSI-CAEN
collection:INSMI
collection:CEREMADE
collection:GREYC
collection:GREYC-IMAGE
collection:COMUE-NORMANDIE
collection:PSL
collection:ENSICAEN
collection:UNICAEN
collection:UNIV-DAUPHINE-PSL
Subject Geographic:
Original Identifier:
HAL: hal-01201596
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-18461-6_51
DOI:
10.1007/978-3-319-18461-6_51
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.01201596v1
Database:
HAL

Weitere Informationen

Convex optimization has become ubiquitous in most quantitative disciplines of science, including variational image processing. Prox-imal splitting algorithms are becoming popular to solve such structured convex optimization problems. Within this class of algorithms, Douglas– Rachford (DR) and ADMM are designed to minimize the sum of two proper lower semi-continuous convex functions whose proximity operators are easy to compute. The goal of this work is to understand the local convergence behaviour of DR (resp. ADMM) when the involved functions (resp. their Legendre-Fenchel conjugates) are moreover partly smooth. More precisely, when both of the two functions (resp. their conjugates) are partly smooth relative to their respective manifolds, we show that DR (resp. ADMM) identifies these manifolds in finite time. Moreover, when these manifolds are affine or linear, we prove that DR/ADMM is locally linearly convergent with a rate in terms of the cosine of the Friedrichs angle between the tangent spaces of the identified manifolds. This is illustrated by several concrete examples and supported by numerical experiments.