Treffer: On Matrices With Displacement Structure: Generalized Operators and Faster Algorithms

Title:
On Matrices With Displacement Structure: Generalized Operators and Faster Algorithms
Contributors:
Symbolic Special Functions : Fast and Certified (SPECFUN), Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Arithmetic and Computing (ARIC), Centre Inria de l'Université Grenoble Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE), School of Computer Science [Waterloo] (UWO), University of Waterloo [Waterloo]
Source:
SIAM Journal on Matrix Analysis and Applications. 38(3):733-775
Publisher Information:
CCSD; Society for Industrial and Applied Mathematics, 2017.
Publication Year:
2017
Collection:
collection:ENS-LYON
collection:CNRS
collection:INRIA
collection:UNIV-LYON1
collection:INRIA-RHA
collection:INRIA-SACLAY
collection:LIP
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:UNIV-PARIS-SACLAY
collection:INRIA-SACLAY-2015
collection:INRIA2017
collection:INRIA-RENGRE
collection:UDL
collection:UNIV-LYON
collection:GS-COMPUTER-SCIENCE
collection:INRIAARTDOI
collection:INRIA-CANADA
collection:ENSIIE
Original Identifier:
ARXIV: 1703.03734
HAL: hal-01588552
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0895-4798
1095-7162
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/1703.03734; info:eu-repo/semantics/altIdentifier/doi/10.1137/16M1062855
DOI:
10.1137/16M1062855
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.01588552v1
Database:
HAL

Weitere Informationen

For matrices with displacement structure, basic operations like multiplication, inversion , and linear system solving can all be expressed in terms of the following task: evaluate the product AB, where A is a structured n × n matrix of displacement rank α, and B is an arbitrary n × α matrix. Given B and a so-called generator of A, this product is classically computed with a cost ranging from O(α^2 M (n)) to O(α^2 M (n) log(n)) arithmetic operations, depending on the type of structure of A; here, M is a cost function for polynomial multiplication. In this paper, we first generalize classical displacement operators, based on block diagonal matrices with companion diagonal blocks, and then design fast algorithms to perform the task above for this extended class of struc-tured matrices. The cost of these algorithms ranges from O(α^{ω−1} M (n)) to O(α^{ω−1} M (n) log(n)), with ω such that two n × n matrices over a field can be multiplied using O(n^ω) field operations. By combining this result with classical randomized regularization techniques, we obtain faster Las Vegas algorithms for structured inversion and linear system solving.