Treffer: Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model

Title:
Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model
Contributors:
Reproduction et développement des plantes (RDP), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Simulation et Analyse de la morphogenèse in siliCo (MOSAIC), Centre Inria de l'Université Grenoble Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Inria Project Morphogenetics, European Research Council
Source:
Journal of Mathematical Biology. 78(3):625-653
Publisher Information:
CCSD; Springer, 2019.
Publication Year:
2019
Collection:
collection:ENS-LYON
collection:CNRS
collection:INRIA
collection:UNIV-LYON1
collection:INRA
collection:INRIA-RHA
collection:INRIA_TEST
collection:RDP
collection:TESTALAIN1
collection:INRIA2
collection:TDS-MACS
collection:AGREENIUM
collection:INRIA-RENGRE
collection:INRIA-300009
collection:UDL
collection:UNIV-LYON
collection:INRAE
collection:INRIAARTDOI
Original Identifier:
PRODINRA: 477422
PUBMED: 30209574
WOS: 000461170500004
HAL: hal-01691110
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISBN:
978-0-00-461170-9
ISSN:
0303-6812
1432-1416
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00285-018-1286-y; info:eu-repo/semantics/altIdentifier/pmid/30209574
DOI:
10.1007/s00285-018-1286-y
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.01691110v3
Database:
HAL

Weitere Informationen

A crucial question in developmental biology is how cell growth is coordinated in living tissue to generate complex and reproducible shapes. We address this issue here in plants, where stiff extracellular walls prevent cell migration and mor-phogenesis mostly results from growth driven by turgor pressure. How cells grow in response to pressure partly depends on the mechanical properties of their walls, which are generally heterogeneous, anisotropic and dynamic. The active control of these properties is therefore a cornerstone of plant morphogenesis. Here, we focus on wall stiffness, which is under the control of both molecular and mechanical signaling. Indeed, in plant tissues, the balance between turgor and cell wall elasticity generates a tissue-wide stress field. Within cells, mechano-sensitive structures, such as cortical microtubules, adapt their behavior accordingly and locally influence cell wall remodeling dynamics. To fully apprehend the properties of this feedback loop, modeling approaches are indispensable. To that end, several modeling tools in the form of virtual tissues have been developed. However , these models often relate mechanical stress and cell wall stiffness in relatively abstract manners, where the molecular specificities of the various actors are not fully captured. In this paper, we propose to refine this approach by including parsimonious biochemical and biomechanical properties of the main molecular actors involved. By a homogenization principle and through finite element simulations, we study the role of stress-sensing microtubules on organ-scale mechanics.