Result: Complexity of Grundy coloring and its variants

Title:
Complexity of Grundy coloring and its variants
Contributors:
Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Distributed Events Analysis Research Group (MTA SZTAKI Hungarian Academy of Sciences), Hungarian Academy of Sciences (MTA), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Source:
Discrete Applied Mathematics. 243:99-114
Publisher Information:
CCSD; Elsevier, 2018.
Publication Year:
2018
Collection:
collection:ENS-LYON
collection:PRES_CLERMONT
collection:CNRS
collection:UNIV-LYON1
collection:UNIV-DAUPHINE
collection:LIP
collection:LIMOS
collection:LAMSADE-DAUPHINE
collection:PSL
collection:UDL
collection:UNIV-LYON
collection:UNIV-DAUPHINE-PSL
collection:CLERMONT-AUVERGNE-INP
Original Identifier:
HAL: hal-01991659
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
0166-218X
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2017.12.022
DOI:
10.1016/j.dam.2017.12.022
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.01991659v1
Database:
HAL

Further Information

The Grundy number of a graph is the maximum number of colors used by the greedy coloring algorithm over all vertex orderings. In this paper, we study the computational complexity of Grundy Coloring , the problem of determining whether a given graph has Grundy number at least k. We also study the variants Weak Grundy Coloring (where the coloring is not necessarily proper) and Connected Grundy Coloring (where at each step of the greedy coloring algorithm, the subgraph induced by the colored vertices must be connected). We show that Grundy Coloring can be solved in time O * (2.443 n) and Weak Grundy Coloring in time O * (2.716 n) on graphs of order n. While Grundy Coloring and Weak Grundy Coloring are known to be solvable in time O * (2 O(wk)) for graphs of treewidth w (where k is the number of colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot be solved in time O * (2 o(w log w)). We also describe an O * (2 2 O(k)) algorithm for Weak Grundy Coloring, which is therefore FPT for the parameter k. Moreover, under the ETH, we prove that such a running time is essentially optimal (this lower bound also holds for Grundy Coloring). Although we do not know whether Grundy Coloring is in FPT, we show that this is the case for graphs belonging to a number of standard graph classes including chordal graphs, claw-free graphs, and graphs excluding a fixed minor. We also describe a quasi-polynomial time algorithm for Grundy Coloring and Weak Grundy Coloring on apex-minor graphs. In stark contrast with the two other problems, we show that Connected Grundy Coloring is NP-complete already for k = 7 colors.