Result: Hybrid multi-core CPU and GPU-based B&B approaches for the blocking job shop scheduling problem

Title:
Hybrid multi-core CPU and GPU-based B&B approaches for the blocking job shop scheduling problem
Contributors:
Centre de recherche sur l'Information Scientifique et Technique (CERIST), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Équipe Calcul Distribué et Asynchronisme (LAAS-CDA), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut National des Sciences Appliquées (INSA)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse III - Paul Sabatier (UT3), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)
Source:
Journal of Parallel and Distributed Computing. 117:73-86
Publisher Information:
CCSD; Elsevier, 2018.
Publication Year:
2018
Collection:
collection:UNIV-TLSE2
collection:UNIV-TLSE3
collection:CNRS
collection:INSA-TOULOUSE
collection:LAAS
collection:UT1-CAPITOLE
collection:LAAS-CDA
collection:LAAS-RESEAUX-ET-COMMUNICATIONS
collection:INSA-GROUPE
collection:LAAS-RISC
collection:TOULOUSE-INP
collection:UNIV-UT3
collection:UT3-INP
collection:UT3-TOULOUSEINP
collection:TEST7-HALCNRS
Original Identifier:
HAL: hal-02076871
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
0743-7315
1096-0848
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpdc.2018.02.005
DOI:
10.1016/j.jpdc.2018.02.005
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.02076871v1
Database:
HAL

Further Information

The Branch and Bound algorithm (B&B) is a well known method for solving optimally Combinatorial Optimization Problems (COPs). This method is based on intelligent enumeration of all feasible solutions which reduce considerably the search space. Nevertheless, it remains inefficient when using the sequential approach to deal with large problem instances due to its huge resolutions time. However, the execution time can be reduced considerably by using parallel computing architectures. With the huge evolution of the multi-cores CPUs and GPUs, It is quite hard to design schemes that efficiently exploit the different hardware architectures simultaneously. As a result, most of the existing works focus on exploiting one hardware architecture at a time. In this paper, we propose five parallel approaches to accelerate the B&B execution time using Multi and Many-core systems at the same time. Our goal is to solve optimally the Blocking Job Shop Scheduling problem (BJSS) which is one of the hardest scheduling problem. The first proposed approach is a multi-search parallelization based on Master/Worker paradigm, exploiting the Multi-Core CPU-processors. The second and the third approaches represent a GPU based parallelization schemes having different level of parallelism and GPU occupancy. The forth and fifth approaches represent a hybridization between the Muli-core approach and the GPU based parallelization approaches. The goal of this hybridization is to benefit from the power of both the CPU-cores and the GPU at the same time. This hybridization is based on concurrent kernels execution provided by Nvidia Multi process Service (MPS) which allows multiple host processes (Master and workers) to use at the same time the GPU to launch their kernels in order to accelerate the bounding of one or several nodes at a time. Experiments using the well known Taillard instances confirm the efficiency of our proposals and show a relative speedup of 160x as compared to an optimized sequential B&B algorithm.