Treffer: New List Skeletons for the Python Skeleton Library

Title:
New List Skeletons for the Python Skeleton Library
Contributors:
Northern Arizona University [Flagstaff], Laboratoire d'Informatique Fondamentale d'Orléans (LIFO), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), NaoMod - Nantes Software Modeling Group (LS2N - équipe NaoMod), Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Automatique, Productique et Informatique (IMT Atlantique - DAPI), IMT Atlantique (IMT Atlantique)
Source:
PDCAT 2019: 20th International Conference on Parallel and Distributed Computing, Applications and Technologies, Dec 2019, Gold Coast, Australia. ⟨10.1109/PDCAT46702.2019.00077⟩
Publisher Information:
HAL CCSD, 2019.
Publication Year:
2019
Collection:
collection:UNIV-NANTES
collection:INSTITUT-TELECOM
collection:CNRS
collection:UNIV-ORLEANS
collection:EC-NANTES
collection:UNAM
collection:LS2N
collection:LS2N-NAOMOD
collection:LS2N-NAOMOD-IMTA
collection:IMTA_DAPI
collection:LS2N-IMTA
collection:IMT-ATLANTIQUE
collection:INSA-GROUPE
collection:INSA-CVL
collection:INSTITUTS-TELECOM
collection:NANTES-UNIVERSITE
collection:UNIV-NANTES-AV2022
collection:NU-CENTRALE
collection:INSTITUT-MINES-TELECOM
Subject Geographic:
Original Identifier:
HAL: hal-02317124
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/PDCAT46702.2019.00077
DOI:
10.1109/PDCAT46702.2019.00077
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.02317124v1
Database:
HAL

Weitere Informationen

Algorithmic skeletons are patterns of parallel computations. Skeletal parallel programming eases parallel programming: a program is merely a composition of such patterns. Data-parallel skeletons operate on parallel data-structures that have often sequential counterparts. In algorithmic skeleton approaches that offer a global view of programs, a parallel program has therefore a structure similar to a sequential program but operates on parallel data-structures. PySke is such an algorithmic skeleton library for Python to program shared or distributed memory parallel architectures in a simple way. This paper presents an extension to PySke: new algorithmic skeletons on parallel lists. This extension is evaluated on an application.