Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: mpLBP: A point-based representation for surface pattern description

Title:
mpLBP: A point-based representation for surface pattern description
Contributors:
Istituto di Matematica Applicata e Tecnologie Informatiche [Pavia] (IMATI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Origami (Origami), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE38-0009,e-ROMA,Restauration expressive, par sculpture et animation, de l'héritage statuaire Gallo-­Romain(2016)
Source:
Computers and Graphics. 86:81-92
Publisher Information:
CCSD; Elsevier, 2020.
Publication Year:
2020
Collection:
collection:CNRS
collection:UNIV-LYON1
collection:UNIV-LYON2
collection:INSA-LYON
collection:EC-LYON
collection:LIRIS
collection:LYON2
collection:INSA-GROUPE
collection:UDL
collection:UNIV-LYON
collection:ANR
collection:HAL-LYON-2-NOUVELLE-VERSION
Original Identifier:
HAL: hal-02406554
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0097-8493
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cag.2019.12.001
DOI:
10.1016/j.cag.2019.12.001
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.02406554v1
Database:
HAL

Weitere Informationen

The Local Binary Pattern (LBP) is a very popular pattern descriptor for images that is widely used to classify repeated pixel arrangements in a query image. Several extensions of the LBP to surfaces exist, for both geometric and colorimetric patterns. These methods mainly differ on the way they code the neighborhood of a point, balancing the quality of the neighborhood approximation with the computational complexity. For instance, using mesh topological neighborhoods as a surrogate for the LBP pixel neighborhood simplifies the computation, but this approach is sensitive to irregular vertex distributions and/or might require an accurate surface re-sampling. On the contrary, building an adaptive neighborhood representation based on geodesic disks is accurate and insensitive to surface bendings but it considerably increases the computational complexity. Our idea is to adopt the kd-tree structure to directly store a surface described by a set of points and to build the LBP directly on the point cloud, without considering any support mesh. Following the LBP paradigm, we define a local descriptor at each point that is further used to define a global statistical Mean Point LBP (mpLBP) descriptor. When used to compare shapes, this descriptor reaches state of the art performances , while keeping a low computational cost. Experiments on benchmarks and datasets from real world objects are provided altogether with the analysis of the algorithm parameters, property and descriptor robustness.