Treffer: graphkit-learn : a Python Library for Graph Kernels Based on Linear Patterns

Title:
graphkit-learn : a Python Library for Graph Kernels Based on Linear Patterns
Contributors:
Equipe Apprentissage (LITIS - DocApp), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), ANR-18-CE23-0014,APi,Apprivoiser la Pré-image(2018)
Source:
Pattern Recognition Letters. 143:113-121
Publisher Information:
CCSD; Elsevier, 2021.
Publication Year:
2021
Collection:
collection:INSA-ROUEN
collection:LITIS
collection:COMUE-NORMANDIE
collection:TDS-MACS
collection:UNIROUEN
collection:UNILEHAVRE
collection:INSA-GROUPE
collection:ANR
collection:ANR-IA-18
collection:ANR-IA
Original Identifier:
HAL: hal-03111016
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0167-8655
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2021.01.003
DOI:
10.1016/j.patrec.2021.01.003
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.03111016v1
Database:
HAL

Weitere Informationen

This paper presents graphkit-learn, the first Python library for efficient computation of graph kernels based on linear patterns, able to address various types of graphs. Graph kernels based on linear patterns are thoroughly implemented, each with specific computing methods, as well as two wellknown graph kernels based on non-linear patterns for comparative analysis. Since computational complexity is an Achilles' heel of graph kernels, we provide several strategies to address this critical issue, including parallelization, the trie data structure, and the FCSP method that we extend to other kernels and edge comparison. All proposed strategies save orders of magnitudes of computing time and memory usage. Moreover, all the graph kernels can be simply computed with a single Python statement, thus are appealing to researchers and practitioners. For the convenience of use, an advanced model selection procedure is provided for both regression and classification problems. Experiments on synthesized datasets and 11 real-world benchmark datasets show the relevance of the proposed library.