Treffer: The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies

Title:
The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies
Contributors:
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Hydrodynamique et écoulements environnementaux [Institut Pprime] (HydEE), Département Fluides, Thermique et Combustion [Institut Pprime] (Département FTC), Institut Pprime [UPR 3346] (PPrime [Poitiers]), Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique [Poitiers] (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique [Poitiers] (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime [UPR 3346] (PPrime [Poitiers]), Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique [Poitiers] (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique [Poitiers] (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS), The Community Inversion Framework is currently funded by the project (http://verify.lsce.ipsl.fr, last access:23 August 2021), which received funding from the EuropeanUnion’s Horizon 2020 research and innovation programme undergrant agreement no. 776810, European Project: 776810,H2020-SC5-2016-2017,H2020-SC5-2017-OneStageB,VERIFY(2018)
Source:
Geoscientific Model Development. 14(8):5331-5354
Publisher Information:
CCSD; European Geosciences Union, 2021.
Publication Year:
2021
Collection:
collection:CEA
collection:INSU
collection:CNRS
collection:UNIV-POITIERS
collection:ENSMA
collection:GIP-BE
collection:UVSQ
collection:CEA-UPSAY
collection:LSCE
collection:UNIV-PARIS-SACLAY
collection:PPRIME
collection:TEST-HALCNRS
collection:LSCE-CEA
collection:UVSQ-UPSACLAY
collection:UNIVERSITE-PARIS-SACLAY
collection:GS-ENGINEERING
collection:GS-GEOSCIENCES
collection:GS-BIOSPHERA
collection:INSTITUT-SCIENCES-LUMIERE
collection:ISAE-ENSMA
collection:APT_TEST
Original Identifier:
HAL: hal-03330124
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISBN:
978-1-4533-1202-5
ISSN:
1991-9603
1991-959X
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-14-5331-2021; info:eu-repo/grantAgreement//776810/EU/Observation-based system for monitoring and verification of greenhouse gases/VERIFY
DOI:
10.5194/gmd-14-5331-2021
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.03330124v1
Database:
HAL

Weitere Informationen

. Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry–transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.