Treffer: Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

Title:
Online Graph Topology Inference with Kernels for Brain Connectivity Estimation
Contributors:
Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE48-0002,DARLING,Adaptation et apprentissage distribués pour les signaux sur graphe(2019), ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Source:
ICASSP 2020 - 2020 IEEE International Conference on Acoustics. :1200-1204
Publisher Information:
CCSD; IEEE, 2020.
Publication Year:
2020
Collection:
collection:INSU
collection:UNICE
collection:CNRS
collection:OCA
collection:LAGRANGE
collection:UNIV-COTEDAZUR
collection:TEST-HALCNRS
collection:PNRIA
collection:3IA-COTEDAZUR
collection:ANR
collection:UNIV-COTEDAZUR_COLLECTION_DEFAUT
collection:ANR-IA-19
collection:ANR-IA
collection:TEST-NICE
Subject Geographic:
Original Identifier:
HAL: hal-03347352
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/ICASSP40776.2020.9053148
DOI:
10.1109/ICASSP40776.2020.9053148
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.03347352v1
Database:
HAL

Weitere Informationen

In graph signal processing, there are often settings where the graph topology is not known beforehand and has to be estimated from data. Moreover, some graphs can be dynamic, such as brain activity supported by neurons or brain regions. This paper focuses on estimating in an online and adaptive manner a network structure capturing the non-linear dependencies among streaming graph signals in the form of a possibly directed, adjacency matrix. By projecting data into a higher-or infinite-dimension space, we focus on capturing nonlinear relationships between agents. In order to mitigate the increasing number of data points, we employ kernel dictionaries. Finally, we run a series of tests in order to experimentally illustrate the usefulness of our kernel-based approach on biomedical data, on which we obtain results comparable to state-of-the-art methods.